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In this paper, we propose to control the strength of phase-locking between two dipolarly coupled

vortex based spin-torque nano-oscillators by placing an intermediate oscillator between them. We

show through micromagnetic simulations that the strength of phase-locking can be largely tuned by

a slight variation of current in the intermediate oscillator. We develop simplified numerical simula-

tions based on analytical expressions of the vortex core trajectories that will be useful for investi-

gating large arrays of densely packed spin-torque oscillators interacting through their stray fields.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4962014]

Spin-torque nano-oscillators are magnetic auto-oscillators

of deep submicron dimensions. Made of spin-valves1,2 or mag-

netic tunnel junctions,3 they can be fabricated on top of a plane

of CMOS transistors and they operate at room temperature.

The torque on magnetization is generated by sending a spin-

polarized current through the ferromagnetic layer. For high

enough current densities, this spin-torque can induce sustained

magnetization precessions that are then converted into voltage

oscillations by magneto-resistive effects. The frequency of

these microwave oscillators can be tuned over several GHz by

changing the amplitude of the injected dc current or applied

magnetic field. Because of this high non-linearity, spin-torque

nano-oscillators are sensitive to small variations of magnetic

field and electric current.4 In particular, several spin-torque

nano-oscillators can mutually synchronize even if their indi-

vidual frequencies are initially different.5–11 Thanks to these

features they are excellent candidates for building computing

systems inspired from neural synchronization in the brain.12–15

Indeed bio-inspired computing with oscillators requires to be

able to fabricate very large arrays of interacting oscillators and

to be able to control the degree of coupling between the oscil-

lators.16,17 If several physical phenomena can be used to cou-

ple spin-torque oscillators, such as spin waves5,6,18 or electric

currents,7,19 one of the most appealing towards the realization

of dense arrays is the dipolar coupling. Indeed when oscillators

are closely packed, with the edge to edge distance below

500 nm, the dipolar coupling becomes intense and can syn-

chronize their dynamics, as demonstrated theoretically20–22

and experimentally.23 Whereas it is possible to tune the cou-

pling provided by spin waves9 and electrical currents,24 it

remains a challenge to modify the interaction originating from

the dipolar fields emitted by the oscillators. In this letter, we

propose to adjust the dipolar coupling between two close-by

spin-torque oscillators by inserting a third oscillator between

them. We study numerically how the amplitude of the current

sent through the intermediate oscillator modifies the coupling

between the other two. For this purpose, we perform full

micromagnetic simulations of the three coupled oscillators in

order to have an accurate estimate of the dipolar interactions.

Then, we develop much faster numerical simulations based on

analytical equations for the oscillators’ dynamics which will

be useful for simulating large scale arrays of dipolarly coupled

spin-torque oscillators.

The system we consider is illustrated in Fig. 1. We study

three identical circular nanopillars with diameters 200 nm. In

each oscillator, the magnetic configuration of the free layer

is a vortex, all with the same core polarities and chiralities.

We focus on vortex oscillators because the gyration of a vor-

tex core through spin-torque in a single pillar is well under-

stood. It has been shown that analytical descriptions of the

dynamics match experiments quantitatively.25 In addition,

vortex oscillators have a low phase noise and have been

shown to synchronize by dipolar coupling experimentally.23

In our simulations, we consider that the magnetization of the

polarizing magnetic layer is fixed, pointing out of plane, and

that the magnetostatic field it emits is negligible. The geo-

metrical and magnetic parameters that we use are displayed

in Table I.

In order to study the dynamics of the three dipolarly

coupled vortices, we have performed full micromagnetic

simulations as well as numerical simulations solving for ana-

lytical equations of vortex core trajectories and compared

both methods. The micromagnetic simulations are performed

using the GPU (Graphics Processing Unit) based micromag-

netic code called MuMax3,26 with a mesh size 2.5� 2.5 nm2.

The numerical simulations solving for the vortex core gyro-

tropic motion are based on the Thiele equation20,22,27–29

G� _Xi þ D � _Xi � ðkms þ kOeJiÞXi�jðXi � ẑÞ
� Fint

ij ðXjÞ ¼ 0: (1)

This equation describes the circular motion of the vortex core

of position Xi in oscillator i. The first term is a Magnus-like

force, pointing towards the edge of the dot. It arises from the

fast upwards spiral of magnetization in the core that generates

a gyrovector Gi ¼ �Gẑ.27 The second term accounts for the

damping force, tangential to the core trajectory and opposite

to the vortex core velocity _Xi. The damping coefficient Di isa)Electronic mail: abreuaraujo.flavio@gmail.com.
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equal to Di ¼ akGð1þ 0:6s2
i � 0:2s4

i Þ, where si is the nor-

malized radius of gyration si ¼ kXik=R and k ¼ 0:5ln

ðR=ð2LexÞÞ þ 3=8, with Lex ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ð2pM2

s Þ
p

the exchange

length. The third term is the confinement force pointing

inwards the dot. It arises from both the magnetostatic energy

(kms
i ) and the current-induced Oersted field confinement

(kOe
i ). The magnetostatic contribution kms

i to the Thiele equa-

tion has been calculated under the “Two Vortex

Ansatz.”28,29 We numerically evaluate the energy (Wms) and

specialize our computation to the dot aspect ratio of e ¼
h=ð2RÞ ¼ 0:05 and obtain after a polynomial fit

kms
i sið Þ ¼

8M2
s h2

R
1:594� 1þ 0:175s2

i þ 0:065s4
i � 0:054s6

i

� �
:

(2)

The kOe
i coefficients are computed using the 10th order

Taylor expansion after evaluating the current-induced

Oersted field contribution (WOe) to the confinement energy

and are given by

kOe
i ¼ JCMshR

8p2

75

� 1� 4

7
s2

i �
1

7
s4

i �
16

231
s6

i �
125

3003
s8

i þO s10
i

� �� �
:

(3)

The fourth term in Eq. (1) is the spin-torque induced

force exerted on the vortex core. In our case, since we want

to generate sustained gyrations of the core, we choose the

current sign so that the spin-torque force points opposite to

the damping force. The effective spin torque efficiency is

given by j ¼ paJMsh where aJ is the spin torque amplitude

aJ ¼ P�hJ=ð2jejMshÞ (with �h the Planck constant and e the

electron charge). Finally, the last term in Eq. (1) accounts for

the magnetostatic interaction forces due to stray fields

between oscillators i and j, the main contribution being dipo-

lar. In contrast to previous works, the analytical version of

the magnetostatic interaction developed by Sukhostavets

et al.30 has been considered instead of evaluating it combin-

ing micromagnetic simulations and analytical model. Fint
ij is

given by the following multipole approximation:

Fint
ij ¼

gij
x 0

0 gij
y

� �
Xj; (4)

where gij
x;y are the magnetostatic interaction coefficients

gij
x ¼

h2

R
M2

s p
2 4

9d3
ij

þ 1

5d5
ij

þ 113

560d7
ij

þ 5 � 197

8 � 16 � 27d9
ij

 !
; (5a)

gij
y ¼ �

h2

R
M2

s p
2 8

9d3
ij

þ 4

5d5
ij

þ 6 � 113

560d7
ij

þ 5 � 197

16 � 27d9
ij

 !
; (5b)

with dij ¼ ð2Rþ LijÞ=R the reduced inter-distance between

oscillators (Lij is the edge-to-edge distance between two

oscillators). In this work, the non-linearities of the gyrovec-

tor G and the spin-transfer-torque efficiency j have been

neglected.31

The two extreme oscillators labeled 1 and 2 are set in a

regime of sustained vortex oscillations by supplying them

with a dc current J1¼ J2 above the threshold current for

auto-oscillations Jc��5:6�106 A=cm2 : J1¼ J2¼ 1:25 �Jc.

The edge to edge distance between each oscillator is 50nm,

resulting in a separation of 300nm between oscillators 1 and

2. This distance is small enough for oscillators 1 and 2 to

interact strongly through the dipolar fields they emit. In par-

ticular, in the absence of the intermediate oscillator # they

mutually synchronize and lock their phases to the same value

(maxðu2�u1Þ< 2�)).20,22 We now study what happens

when the intermediate oscillator # is introduced, by looking

at the phase difference u2�u1 extracted from micromag-

netic and analytically based simulations. Fig. 2(a) shows the

maximum value taken by the phase difference between oscil-

lators 1 and 2, maxðu2�u1Þ, during vortex gyrations as a

function of the dc current injected through oscillator #.

As mentioned in the Introduction, the simulations are

performed assuming that all the vortex core polarities are

parallel. Two regimes appear in Fig. 2(a). At low currents,

for g ¼ J#=Jc < 0:75; maxðu2 � u1Þ takes large values: the

presence of the intermediate vortex destroys the phase lock-

ing between oscillators 1 and 2. In the first regime

(0:5 < g < 0:86), modes from the different oscillators can

be observed (up to 3) but only the frequency of the main

common mode is shown in Fig. 2(b). Fig. 3 shows time

traces of the vortex core radius and phase differences

between each oscillator for J# ¼ 0:625 � Jc. Micromagnetic

and core-dynamics-based numerical simulations indicate that

large fluctuations of the phase differences between the oscil-

lators occur. They both also show that oscillator # oscillates

with a lower amplitude than oscillators 1 and 2. Indeed, in

this regime, the current through oscillator # is much lower than

the current Jc leading to auto-oscillations. However, even if the

vortex of oscillator # is damped its orbit fluctuates due to the

TABLE I. Geometrical and material parameters for Permalloy (Ni81Fe19)

considered in the simulations.

H ¼ 10 nm (dot thickness)

D ¼ 200 nm (dot diameter)

Ms ¼ 800 emu/cm3 (saturation magnetization)

A ¼ 1.3� 10–6 erg/cm (stiffness constant)

A ¼ 0.01 (Gilbert damping parameter)

P ¼ 0.2 (current spin polarization)

FIG. 1. Schematic illustration of a three vortex spin-torque oscillator chain

where the edge to edge distance is 50 nm. Oscillators 1 and 2 are supplied

with the same current density (J1¼ J2) and the “tuning” oscillator # is sup-

plied with J# ¼ g � Jc.
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rotating microwave dipolar fields emitted by oscillators 1 and

2. As J# increases, the vortex in oscillator # is less and less

damped and its orbit grows. As a result, the dipolar field gener-

ated by oscillator # increases with J# and disrupts the trajecto-

ries of oscillators 1 and 2 more and more, leading to increasing

values of maxðu2 � u1Þ as can be seen in Fig. 2(a).

However, for g > 0:86, a second regime appears where

maxðu2 � u1Þ is drastically reduced and phase-locking is

restored. In contrast to the first mode, only one common syn-

chronization mode is observed for g > 0:86. Time traces of

the vortex core radius and phase differences between each

oscillator for J# ¼ 1:25Jc are shown in Fig. 4. In this regime,

the phase difference between oscillators 1 and 2 is bounded

and close to zero, as can be seen in Figs. 4(b) and 4(d). Now

the radius of all three oscillators is much larger, around

60 nm. Indeed we observe from our simulations that the tran-

sition to the phase-locking regime coincides with the onset

of self-sustained precessions of oscillator #. This clearly

appears in Fig. 2(b), which shows how the frequency of the

three coupled oscillators varies with J#. A kink in the fre-

quency curve appears at the transition to phase-locking.

Indeed, while the vortex frequency is practically constant in

the damped mode, it increases above the auto-oscillation

threshold. In the auto-oscillation regime, the orbit of the vor-

tex core grows with current through spin torque leading to an

increase of the confinement and larger frequencies. It should

be noted however that the threshold for auto-oscillations of

oscillator # occurs for g< 1, in other words below the critical

current necessary to compensate the damping. Indeed, the

magnetization dynamics of oscillator # is driven by the dc

current J# assisted by resonant microwave excitations

incoming from oscillators 1 and 2 through their stray fields.

As can be seen in Figs. 4(a) and 4(c), small amplitude oscil-

lations of the vortex orbit radii appear. These oscillations are

due to a slight shift of the center of the vortex gyrotropic

motion (from about 0.1 to about 1 nm depending on the

applied current). The frequency of the small amplitude fluc-

tuations is twice the frequency of the main gyrotropic

motion.

To summarize, we have shown for the first time that the

strength of phase-locking between two close-by oscillators

interacting via their dipolar fields can be tuned by a slight

variation (0:75 < g < 0:86 in Fig. 2(a)) of the current den-

sity sent through an intermediate one. In addition, we pro-

pose a new full analytical description of the coupled

dynamics. Furthermore, numerical simulations based on

these analytical expressions of the vortex core dynamics are

in excellent agreement with full micromagnetic simulations

FIG. 2. (a) Maximum amplitude of the phase difference between oscillators

1 and 2 [maxðu2 � u1Þ] (b) Frequency of the oscillators, both as a function

of the current through oscillator #: J# ¼ gJc. The results of micromagnetic

simulations (vortex analytics) are displayed as hollow red circles (small blue

disks).

FIG. 3. (a) and (b) (resp. (c) and (d)) show the radii and phase difference

(u2 � u1) evolutions of the three oscillators illustrated in Fig. 1 for g ¼
J=Jc ¼ 0:625 using micromagnetic simulations (resp. vortex analytics).

FIG. 4. (a) and (b) (resp. (c) and (d)) show the radii and phase difference

(u2 � u1) evolutions of the three oscillators illustrated in Fig. 1 for g ¼
J#=Jc ¼ 1:25 using micromagnetic simulations (resp. vortex analytics).
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and several orders of magnitude faster, even with highly effi-

cient solvers making use of GPU hardware. Our results

opens the path to the simulation of complex dynamical sys-

tems based on large arrays of dipolarly coupled vortex

oscillators.

This work was supported by the ANR MEMOS grant

(reference: ANR-14-CE26-0021) and idex Nanosaclay.

F.A.A. acknowledges the Universit�e catholique de Louvain

for an FSR complement (Fonds Sp�ecial de Recherche).

1S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, R. J.

Schoelkopf, R. A. Buhrman, and D. C. Ralph, Nature 425, 380 (2003).
2W. H. Rippard, M. R. Pufall, S. Kaka, S. E. Russek, and T. J. Silva, Phys.

Rev. Lett. 92, 027201 (2004).
3A. M. Deac, A. Fukushima, H. Kubota, H. Maehara, Y. Suzuki, S. Yuasa,

Y. Nagamine, K. Tsunekawa, D. D. Djayaprawira, and N. Watanabe, Nat.

Phys. 4, 803 (2008).
4A. N. Slavin and V. S. Tiberkevich, IEEE Trans. Magn. 45, 1875

(2009).
5S. Kaka, M. R. Pufall, W. H. Rippard, T. J. Silva, S. E. Russek, and J. A.

Katine, Nature 437, 389 (2005).
6F. B. Mancoff, N. D. Rizzo, B. N. Engel, and S. Tehrani, Nature 437, 393

(2005).
7J. Grollier, V. Cros, and A. Fert, Phys. Rev. B 73, 060409 (2006).
8D. V. Berkov, Phys. Rev. B 87, 014406 (2013).
9S. Sani, J. Persson, S. M. Mohseni, Y. Pogoryelov, P. K. Muduli, A.

Eklund, G. Malm, M. K€all, A. Dmitriev, and J. Åkerman, Nat. Commun.
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