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ABSTRACT

Spin-torque nano-oscillators can emulate neurons at the nanoscale. Recent works show that the non-linearity of their oscillation
amplitude can be leveraged to achieve waveform classification for an input signal encoded in the amplitude of the input voltage.
Here, we show that the frequency and phase of the oscillator can also be used to recognize waveforms. For this purpose,
we phase-lock the oscillator to the input waveform, which carries information in its modulated frequency. In this way, we consid-
erably decrease the amplitude, phase, and frequency noise. We show that this method allows classifying sine and square wave-
forms with an accuracy above 99% when decoding the output from the oscillator amplitude, phase, or frequency. We find that
recognition rates are directly related to the noise and non-linearity of each variable. These results prove that spin-torque
nano-oscillators offer an interesting platform to implement different computing schemes leveraging their rich dynamical features.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5079305

Spin-torque nano-oscillators are promising for neuromor-
phic computing.1–5 These magnetic tunnel junctions can indeed
emulate important properties of artificial neurons through the
non-linearity and relaxation properties of current-induced
magnetization dynamics. It has been shown recently that a
time-multiplexed, single oscillating junction can enable or
improve classification of different waveforms, distinguishing
sines from squares and even spoken digits.6,7 In these experi-
ments, the input waveform was encoded in the amplitude of the
input voltage and the quantity used for computing was the
amplitude of voltage oscillations across the junction. Other
dynamical variables are interesting to leverage for computing,
such as the frequency8 or phase9 of the oscillators, offering a
compelling platform to implement and compare different neuro-
morphic computing approaches. The variable used for comput-
ing should vary non-linearly with the input in a way that is easy
to detect, and the signal to noise ratio should be large. However,
the frequency and phase of spin-torque nano-oscillators tend to
be highly noisy,10–12 which has been shown to be detrimental to

pattern classification.7 Spin-torque induced magnetization
dynamics indeed takes place in nanoscale magnetic volumes,
which makes them sensitive to thermal fluctuations. In addition,
phase noise is enhanced by amplitude noise due to the inherent
coupling between the phase and the amplitude of magnetization
oscillations.13 In this work, we show that these issues can be cir-
cumvented by working in a regime where the oscillator is syn-
chronized to the input waveform that it has to process which
considerably reduces magnetization fluctuations.14 For this pur-
pose, we use a sinusoidal input waveform that carries informa-
tion encoded in its modulated frequency, chosen close to the
spin-torque oscillator frequency.

We first explain in detail our computing strategy and
describe the experimental set-up used to implement it.We then
show experimentally that sine and square waveforms can be
classified by exploiting the frequency, phase, or amplitude of the
oscillations. We highlight the correlation between recognition
rates and the non-linearity of these dynamical variables as a
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function of the input signal to classify. Our work shows that it is
possible to take full advantage of magnetization dynamics by
computing through all the dynamical variables describing a
spin-torque nano-oscillator. In addition, since the input wave-
form and the oscillator output are sinusoidal waveforms with
close frequencies, our scheme should allow chain-connecting
the oscillators to build large neural networks.

Spin-torque nano-oscillators15,16 are composed of two fer-
romagnets separated by a thin non-magnetic layer. The magne-
tization of the bottom ferromagnet is pinned, whereas that of
the top one is free. The spin-torque oscillator used in this exper-
iment is a nano-pillar of 350nm diameter and composed of a
1.6nm thick CoFeB layer with a pinned magnetization, a 1 nm
thick MgO insulating barrier, and a 4nm thick FeB layer whose
ground state is a magnetic vortex. Such nano-pillars can be fab-
ricated with diameters down to 10nm,17 which is adapted for
building large scale neural networks. When a direct current is
injected into this magnetic tunnel junction in the presence of a
magnetic field perpendicular to the layer stack, it induces mag-
netization precessions in the free layer through the effect of
spin torque. Magnetoresistance effects convert magnetic oscil-
lations into resistance oscillations, such that a microwave

voltage is emitted by the oscillator and can be detected using an
oscilloscope. The experimental set-up is shown in Fig. 1.

Spin-torque nano-oscillators have the ability to synchro-
nize their voltage oscillations to external microwave signals at
frequencies close to their natural frequency.18–21 The frequency
and phase of the oscillator lock to the external signal, and its
amplitude is modified. Importantly, noise is reduced in fre-
quency and phase so that these variables are well defined in this
regime.We choose to work in this regime where the input signal
synchronizes the oscillator in order to reduce the noise. The
range of input microwave frequencies that synchronize the
oscillator is called the injection locking range. In the following,
we also take advantage of the frequency pulling regime, by set-
ting the frequency of the input signal just outside of the locking
range, such that the oscillator does not get phase locked, but its
frequency gets pulled towards the frequency of the input signal.

We apply a perpendicular magnetic field H¼ 2000Oe to
the oscillator and inject a direct current Idc ¼ 5mA, which indu-
ces voltage oscillations of amplitude jVj ¼ 13 mV at a frequency
of 232.1MHz. The corresponding emitted power and linewidth
are close to 1lW and 1MHz, respectively. We choose these field
and current bias parameters in order to have a large locking
range which is important for the frequency encoding and to
minimize the linewidth and maximize the output signal. We use
an arbitrary waveform generator (AWG) to generate input
microwave signals. These are injected in a strip line patterned
350nm above the oscillator rather than in the oscillator itself in
order to facilitate the extraction of the oscillator response from
the overall measured signal. The injected signal induces a micro-
wave magnetic field on the oscillator, as well as a microwave
current in the oscillator due to capacitive coupling with the strip
line. In order to synchronize the oscillator, amplitudes of
�350mV of the injected signal need to be applied, such that the
total voltage detected by the oscilloscope is dominated by a
residual capacitive microwave tone rather than the oscillator
voltage.We compensate for this residual tone by adding the out-
put voltage in a power combiner to an exactly opposed micro-
wave signal waveform (subtraction signal in Fig. 1) delayed by the
time t0 that the input signal takes to travel through the lines and
that we calibrate prior to the measurement.

In order to characterize the synchronization of the spin-
torque oscillator with an external source, we send 5 ls long
waveformsmodulated at different frequencies in a 20MHz range

FIG. 1. Schematic of the measurement set-up. The spin-torque nano-oscillator is
composed of two magnetic layers, of fixed magnetization M (gray) and free magneti-
zation m (blue), separated by a thin insulating layer. At an external magnetic field of
H0 ¼ 2000 Oe, a direct current of Idc ¼ 5mA is injected in order to induce magneti-
zation precessions. The microwave signal encoding the input data in its frequency
(blue) is injected into a strip line above the oscillator, thus generating a microwave
magnetic field interacting with the free layer. The microwave voltage V(t) emitted by
the oscillator is added to a microwave signal (subtraction waveform) that compen-
sates for the residual input signal and then is measured using an oscilloscope.

FIG. 2. (a) Frequency fosc, (b) phase DU, and (c) amplitude jV j of the oscillator as a function of the frequency fRF of the injected microwave signal. The phase is determined
with respect to that of the input waveform. Measurement uncertainties, determined on 5 ls time intervals on which the mean is calculated, are shown in the lighter color
shaded area. Yellow and green shaded areas designate the locking range and the frequency pulling range, respectively.
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within the natural frequency of the oscillator. We apply the
Hilbert transform22,23 to the detected voltage in order to extract
frequency, amplitude, and phase relative to that of the injected
microwave signal, which we average over the entire 5 ls wave-
form. The oscillator frequency, phase, and amplitude as a func-
tion of the frequency of the injected microwave signal are shown
in Figs. 2(a)–2(c). As the injection signal frequency approaches
the natural oscillator frequency, the oscillator frequency first
gets pulled towards the injected signal and then becomes identi-
cal to it in the locking range. Noise is reduced in all three varia-
bles in the locking range. Due to the subtraction of the residual
microwave signal performed using a power combiner, the
detected amplitude of the oscillator voltage is divided by two.
This results in a low signal-to-noise ratio even in the locking
range [note large error bars in Fig. 2(c)]. The locking range,
highlighted in yellow in Fig. 2, is experimentally determined from
the standard deviation of the phase that strongly decreases in
this range and is found to be 7.2MHz. As expected, the measured
frequency of the oscillator is equal to the injected frequency in
the locking range [Fig. 2(a)]. The phase difference between the
oscillator and the input signal roughly follows the arcsin depen-
dence on the input frequency predicted by theory13 [Fig. 2(b)].

An oscillator can only achieve good performance in
neuromorphic computing if it transforms the input signal in a
non-linear manner.7,24–26 In the pulling regime (green in Fig. 2),
the oscillator frequency, phase, and amplitude are all highly
non-linear. The oscillator frequency is linear over the entire
locking range, whereas the phase difference and the oscillator
amplitude are non-linear at the edges [Figs. 2(b) and 2(c)].

The fact that the frequency, amplitude, and phase are all
non-linear functions of input frequency enables us to use them
for neuromorphic computing. We now demonstrate this capa-
bility on a task that consists in classification of sine and square
waves of equal periods but different amplitudes. For this, we use
a method called single node reservoir computing.6,7,24,25 This
method uses time multiplexing in order to emulate a reservoir
with a single nano-oscillator that plays a role of a different effec-
tive virtual neuron at each time step.

The input data encoding procedure is shown in Fig. 3. The
input data are a sequence of 100 waveforms randomly chosen
between sines and squares of equal frequencies and different
amplitudes: the amplitude of the square wave is 50% larger than
that of the sine wave. Half of these data are used for training and
the other half for testing the performance. Each waveform is
discretized into 8 points [see Fig. 3(a)], and the task consists in
determining which of the two waveform types each point
belongs to. This is a non-linearly separable task and thus repre-
sents a good benchmark for neuromorphic computing.6,7,25

Time multiplexing is achieved by preprocessing the input
data as illustrated in Fig. 3(b). The detailed procedure can be
found in previous work.7 Each input point is multiplied by the
same binary valued sequence called mask, whose length N
determines the size of the emulated reservoir. Figure 3(b) shows
an illustrative schematic for a reservoir containing N¼6 neu-
rons. In our experiment, we have used N¼ 25 virtual neurons

which we found was the minimum number of neurons required
for good performance. The output of the neural network for
each input time step is a weighted sum of the outputs of each
virtual neuron corresponding to this input

y ¼
XN

i¼1
WifNLðxiÞ; (1)

FIG. 3. (a) The input data are a sequence of random sine and square waves of
equal periods and different amplitudes discretized in 8 points. (b) Pre-processed
data corresponding to half of a sine wave followed by half of a square one. In this
example, the mask maps the problem to six virtual neurons. The Y axis corre-
sponds to one example of encoding frequencies. (c) Sketch of the input voltage cor-
responding to four neuron entries for a sine wave. Different input values are
presented in different colors. The waveform amplitudes are encoded in the fre-
quency of the microwave voltage which is then injected into the strip line for 150 ns
for each data point.
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where N¼ 25 is the number of neurons,Wi is the weight matrix
element corresponding to the ith neuron, fNL is the non-linear
function implemented by the nanodevice, and xi is the input of
the ith neuron, which is the corresponding microwave fre-
quency. The weight matrix is calculated on a computer in order
to match the target ~y ¼ 0 or 1 for sines or squares, respectively.
For a target vector ~Y containing targets ~y for all the training
examples, the weight matrix is calculated as W ¼ ~YF†

, where F†

is the Moore-Penrose pseudo-inverse of matrix F containing
outputs fNLðxiÞ of all neurons and for all training examples.24

Classification performance is highly dependent on the fre-
quency window chosen for input data encoding.We choose this
window in a partial or full overlap with the oscillator locking
range.We fix the window width such that sine and square waves
always take values between 4 MHz and 6MHz, respectively. We
repeat the encoding and measurement procedures for center
frequencies of the encoding window varying between 225 MHz
and 241MHz, and we calculate the success rate. Recognition
rates obtained when decoding neuron outputs from the fre-
quency, phase, and amplitude are shown in Figs. 4(a)–4(c) as a
function of the center frequency of the sliding window.

Changing the center frequency has a double impact on out-
put variables, which is the presence of noise, and the non-linear
dependence on the input frequency. Noise is minimized in the
middle of the locking range, but the output in this regime is a
linear function of the input (see Fig. 2), which results in a disabil-
ity of the neural network to learn the task. Indeed, as can be
seen in Figs. 4(a)–4(c), the success rate for the frequency encod-
ing window centered in the middle of the locking range is close
to 50% for all the three output variables, which for this task
corresponds to random choice. The linear regime is larger for
frequency than for the amplitude and phase, which is reflected
in the bad performance for a larger number of center frequen-
cies in the middle of the locking range.

We find the best performance for the center frequency on
the edge of the locking range,with some of the frequencies used
for encoding lying in the highly non-linear frequency pulling
regime. The best recognition rates are obtained when neuron
outputs are decoded from the phase of the oscillations [99.75%,
Fig. 4(b)], as the phase is both more non-linear than frequency
[best recognition rate of 99.5%, Fig. 4(a)] and less noisy than the
amplitude [best recognition rate of 99%, Fig. 4(c)]. In addition,
higher recognition rates are obtained on the left-hand side of
the locking range compared to the right-hand side due to lower

frequency and amplitude noise on this side [see Figs. 2(a) and
2(c)] as well as higher phase non-linearity [see Fig. 2(b)].

These high classification rates have been obtained by using
relatively large input microwave amplitudes to drive the oscilla-
tor and reduce its noise. In this regime, the magnetization relax-
ation time, which decreases with the excitation amplitude in the
locking range,27 is very short, smaller than 4ns in our case.
Therefore, the emulated neural network performs best at tasks
that do not require a memory, such as the classification of dif-
ferent inputs. When the waveforms to separate have identical
input values that can only be recognized by keeping memory of
past inputs, as is the case for sine and square waves with the
same amplitude, the network performance is lower (82% recog-
nition rate at maximum). In the future, it will be interesting to
study the network intrinsicmemory as a function of drive ampli-
tude and oscillator noise. In addition, an external memory can
be added to the system by using a time-delayed feedback loop
and re-injecting the signal emitted by the oscillator together
with the input data.24–26

As a conclusion, we have shown that spin-torque nano-
oscillators synchronized to microwave signals can emulate arti-
ficial neural networks. The frequency, phase, and amplitude of
the voltage emitted by the oscillator are all non-linear functions
of the frequency of the input microwave signal and can be used
as outputs of the network. Working with synchronized neurons
has the advantage of decreasing the frequency and phase
noise, which will be of particular importance when scaling
down the size of nano-pillars. In addition, frequency encod-
ing is a simple way to use the output of an oscillator to drive
the input of another, thus paving the path for neural net-
works composed of chain-connected spin-torque or spin-
hall nano-oscillators.20,28–30
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