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A hardware neural network based on a single spin-torque vortex nano-oscillator is designed using time-
multiplexing. The behavior of the spin-torque vortex nano-oscillator is simulated with an improved ultra-fast and
quantitative model based on the Thiele equation approach. Different mathematical and numerical adaptations
are brought to the model in order to increase the accuracy and the speed of the simulations. A benchmark task
of waveform classification is designed to assess the performance of the neural network in the framework of
reservoir computing and compare two different versions of the model. The obtained results allow to conclude
on the ability of the system to effectively classify sine and square signals with high accuracy and low root-
mean-square error, reflecting high confidence cognition. Given the high throughput of the simulations, two
innovative parametric studies on the dc bias current intensity and the level of noise in the system are performed
to demonstrate the value of our models. The efficiency of our system is also tested during speech recognition
and shows the agreement between these models and the corresponding experimental measurements.

INTRODUCTION

The need for low power and efficient hardware dedicated
to machine learning has led to a new type of data process-
ing called neuromorphic computing [1]. By taking inspiration
from the brain, it tries to overcome the von Neumann bot-
tleneck by proposing artificial neurons or synapses that are
highly interconnected within a parallel architecture. Differ-
ent systems are under study like photonics [2–6], memris-
tors [7] and spintronics [8]. Among the latter, spin-torque
vortex nano-oscillators (STVOs) have already been shown
to be choice candidates to implement hardware neurons for
machine learning applications. Thanks to their highly non-
linear behavior and intrinsic short-term memory, as well as
a remarkable signal to noise ratio despite their nano-metric
size, several machine learning tasks such as waveform and
speech recognition have been performed successfully with
STVO-based neural networks [9–11]. Their small size, low
power consumption and CMOS-compatibility reinforce their
potential interest concerning the development of neuromor-
phic computing systems [9, 12].

As shown in refs. [9, 13, 14], the recognition success rate
is very sensitive to the non-linear profile of the STVO as well
as the noise regime. These parameters depend on both, the
experimental parameters (external magnetic field and work-
ing current intensity for instance) as well as the design of the
STVO itself. The simulation of such neural networks is hence
of prior importance to better understand the underlying phe-
nomena involved in their cognitive properties, and to optimize
these systems before the actual fabrication. Thus, a fast and
quantitative model is needed. Indeed, it would require a huge
computational power and an extensive amount of time to study
with micromagnetic simulations the dynamics of such oscil-
lators as well as to test several neuromorphic architectures
or input parameters that could be optimized for experimental
measurements [15, 16]. Several solutions are proposed like
using a model based on non-linear magnetic oscillator the-
ory [17, 18], using machine learning to predict the dynamics
of STVOs with Neural ODEs [19] or using analytical mod-

els based on the Thiele equation approach (TEA) [20, 21] for
simulating STVOs.

Abreu Araujo et al. [18] have already compared experi-
mental results [9] and results from STVOs simulated with the
non-linear magnetic oscillator theory [17] for the recognition
of spoken digit with reservoir computing. The parameters
needed for the non-linear magnetic oscillator model are ex-
tracted experimentally and there is an excellent agreement be-
tween experimental and simulated results. However, the accu-
racy of the experimental neural network is surprisingly higher
than that of the simulated neural network. On the contrary,
the function given by Neural ODEs with the addition of noise
allows to predict perfectly the experimental results of Torre-
jon et al. [9] with an acceleration factor of 200 compared to
micromagnetic simulations [19]. Still, the function given by
the neural network is a black box and one does not have ac-
cess to the underlying physics of the oscillator. As an alterna-
tive, TEA models are elegant solutions that have the interest
of being based on an analytical description of the underly-
ing physics. However, they only give quantitative results for
the STVO behavior in the resonant regime [22] (resp. steady-
state regime [23]) i.e. when it does not oscillate (resp. when
it undergoes stable oscillations). For the transient regime of
STVOs (i.e. from the resonant regime to the steady-state
regime or vice versa), TEA models are only able to yield qual-
itative results. Unfortunately, the transient regime is precisely
the regime of interest for reservoir computing applications.
A recent data-driven TEA (DD-TEA) model [16] has been
shown able to describe quantitatively both the steady-state and
transient regimes of STVOs. Furthermore, the results were
obtained with an acceleration of 6 orders of magnitude com-
pared to micromagnetic simulations, hence greatly improving
the throughput of the simulations. This quantitative and ultra-
fast model is simply based on TEA and a few micromagnetic
simulations.

The speed of this DD-TEA model can be further improved
as shown by the two analytical models proposed below. In-
deed, the combination of the DD-TEA model with additional
mathematical adjustments allows to solve it fully analytically.
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The two resulting analytical models described later reach a
9 orders of magnitude acceleration compared to micromag-
netic simulations. These two models are then applied to three
tasks. The first task is a proof of concept of pattern recognition
where sine and square functions have to be distinguished. The
second task is a parametric study of the cognitive results de-
pending on the intensity of the dc input current and the signal-
to-noise ratio (SNR) of the system. The last task is the com-
parison with experimental results from Torrejon et al. [9], the
phenomenological model from Abreu Araujo et al. [18], and
the results from our two analytical models based on DD-TEA
in the framework of speech recognition.

METHODS

The vortex core dynamics can be described by a simple har-
monic oscillator equation [22] when the pulsation ω is con-
stant and the transient dynamic factor Γ→ 0:[

X(t)
Y (t)

]
= ||X||eΓt

[
sin(ωt)
−cos(ωt)

]
(1)

where X(t) and Y (t) are the time-dependent Cartesian coor-
dinates of the vortex core. As both X(t) and Y (t) vary quickly
in time, Eq. (1) can be rewritten by considering the reduced
vortex core position s(t) =

√
X2(t)+Y 2(t)/R where R is the

radius of the magnetic dot. This gives:

s(t) = s∞eΓt (2)

where s∞ is the final reduced position of the vortex core and Γ

is a constant related to the transient state of the dynamics. In
reality, Γ depends on s(t) and Eq. (1) admits a general solution
that writes:

s(t) = s∞ exp
∫ t

0
Γ(s(t ′))dt ′ (3)

After a few developments not detailed here, Eq. (3) can
be expressed as the following ordinary differential equation
(ODE):

ṡ(t) = Γ(s(t))s(t) (4)

The fully analytical expression of Γ(s) as a function of s based
on TEA is given in a previous publication [22]. For the sake
of simplicity, we can truncate Γ(s) to the second order:

Γ(s) = α +β s2 (5)

Both α and β are parameters that depend on the input current
density J and are described as follows:

α(J) = aJJ+a (6)

β (J) = bJJ+b (7)

TABLE I. Dynamical constants for the DD-TEA models in the C+
chirality

Constant Value
aJ 6.64 Hz cm2A−1

bJ −0.43 Hz cm2A−1

a −39.97 MHz
b −25.92 MHz

where a, aJ , b, bJ are fully analytically described constants
whose value is listed in Table I. Finally, by injecting Eq. (5) in
Eq. (4), the following equation appears:

ṡ(t) = αs(t)+β s3(t) (8)

Eq. (8) is a Bernoulli differential equation of order 3, which
accepts the following solution:

s(t) =
s0√(

1+
s2

0
α/β

)
exp(−2αt)−

s2
0

α/β

(9)

Where s0 is the initial reduced vortex core position at t = 0.
The final position of s, i.e. when t→ ∞, depends on the input
current density J:

s∞(J) =

√
−α(J)
β (J)

(10)

Guslienko et al. [23] have reported a similar expression
of the transient regime obtained with a different method.
The simulations based on this analytical low-order truncated
model called s-LOTEA are two orders of magnitude faster
than the previous TEA-based model (DD-TEA [16]) as no
ODE needs to be numerically solved. The value of α(J) and
β (J) can be retrieved using the same data-driven approach as
for the DD-TEA model [16], by fitting the results of a few
micromagnetic simulations (performed using mumax3 [15]).
This leads to a precise description of the transient and steady-
state regimes. This model hence combines physical founda-
tions and the precision of a data-driven method.

The second model is an extension of the first one, allowing
to capture any additional non-linearity in the dynamics of the
vortex core that would not be accounted for in Eq. (9) due to
the truncation to the second order of the Γ(s) parameter. To
do so, a purely mathematical adjustment is brought to the s-
LOTEA model. Indeed, Bernoulli differential equations such
as Eq. (8) can involve any real power. Hence, Eq. (9) can be
generalized to the order n to write Eq. (11), where n(J) is a
fifth-order polynomial of the current density J injected into
the STVO, whose coefficients have been determined by fitting
to micromagnetic simulations results. This model was hence
called the s-analytical High-Precision Thiele equation ap-
proach model (s-HPTEA), as it takes into account the whole
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FIG. 1. Sine and square input signals used for benchmark. Note that
the sine period is slightly offset in order to avoid having two samples
at y = 0.

complexity of the vortex core dynamics.

s(t) =
s0

n

√(
1+

sn
0

α/β

)
exp(−nαt)−

sn
0

α/β

(11)

These two models, on top of being extremely fast to com-
pute using a standard computer compared to micromagnetic
simulations, yield highly accurate results thanks to the combi-
nation with micromagnetic simulations data. They were hence
benchmarked using a simple machine learning task of wave-
form recognition.

The benchmark task consisted in the classification of sine
and square periods composed of 8 samples (Fig. 1). To do
so, a STVO-based neural reservoir [2–5, 24] composed of 24
different neurons was designed. By using time multiplexing,
the neural network was emulated with only one STVO [9]. In-
stead of connecting 24 different STVOs in space to compose
the network, the unique STVO successively played the role of
24 different neurons connected in time. This technique mainly
allows to simplify the setup as the influence of the interactions
between neighboring STVOs on their cognitive performance
is not understood enough at the moment to be simulated reli-
ably. The intrinsic dynamics of the STVO allowing to gener-
ate the output signal was modeled using the two models from
Eq. (9) and Eq. (11) successively, allowing to compare their
respective performance.

To train the network, a database of 80 sine periods and 80
square periods arranged in an alternate fashion was used, and
the training procedure described in Ref. [18] was followed.
For the testing, a similar yet randomly arranged database was
preferred. The target related to a sine (resp. square) sample
is the value 1 (resp. −1). To perfectly classify a given sig-
nal, the 8 samples that compose it must be classified correctly
by the neural network. As any intermediate value between
1 and −1 can be returned by the neural network, any posi-
tive (resp. negative) output value was considered as the result
of the detection of a sine (resp. square) sample. In the cases
where the neural network was not able to yield a conclusive
estimation (i.e., the returned value was numerically consid-
ered as 0, making the decision uncertain), the output value

was chosen randomly between 1 and −1 to implement ran-
dom choice.

The classification result yielded by the neural network was
constructed in two different ways, as presented in Ref. [18].
The τ-Wise (TW) approach consists in treating each of the
8 samples of a given period independently. The accuracy is
thus a value between 0% if none of the samples was correctly
recognized, and 100% if all the samples were correctly recog-
nized (see Fig. 2, top). This allows to assess the performance
of the neural network at recognizing sometimes very small
partial inputs of data (in this case one eighth of a period). The
Winner-Takes-All (WTA) method involves averaging the clas-
sification of the 8 samples of a period before choosing the
value between 1 and −1 that is the closest to this average.
This leads to an accuracy of 1 if the final value corresponds to
the expected target, or 0 if not (see Fig. 2, bottom). This tech-
nique allows to absorb any small inaccuracies that may occur
during the recognition of a period by considering it globally,
hence leading to a slightly better accuracy than with the TW
approach.

The geometry of a known experimental STVO was fully
mimicked during the simulations. The diameter of the STVO
was fixed to d = 200 nm, while its dc resistance Rosc was set
to 140.6 Ω, accordingly to the values presented in Ref. [9, 10,
18]. The chirality of the STVO [22] was fixed to +1 during
all the simulations to ensure the consistency of the results.
However, all the calculations and results are extendable to the
other chirality (−1) by using the corresponding constants [22].

The dc bias current intensity, or working current intensity
Iw is used to trigger the gyrotropic motion of the vortex core.
The input signal is added to it before entering the STVO. The
value of Iw is important as it defines the regime in which the
STVO will operate, and hence influences the way the data is
processed by the STVO. It is represented by the black line in
Fig. 3. Most of the time, Iw was set to 1.986 = 1.05× Icr1 mA,
with Icr1 the first critical current intensity [22]. However this
value can actually be swept across a range of values in order to
assess the influence of Iw on the results of the neural network
during the benchmark task. The power of the input signal can
be written as in Eq. (12) and Eq. (13).

Ps = RoscI2
w (W) (12)

= 10× log10
(
RoscI2

w
)

(dB) (13)

The amplitude of the input signal was scaled up to ∆V =
150 mV (centered on the working voltage derived from Iw,
Rosc and Ohm’s law). It is represented by the red interval
around the Iw line in Fig. 3.

The sampling rate of the input signal was characterized with
a time constant Dt of 50 ns. This parameter must also be cho-
sen wisely as the transient state of the vortex core dynamics is
the main contribution to the non-linear treatment of the data.
Hence, a too small Dt will not allow to sufficiently leverage
the transient state of the dynamics, while a too long Dt will
lead to the saturation of the regime into the steady-state, hence
decreasing the efficiency of the data treatment.
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0.6 1 1 0.6 0.8-0.8 -1 -0.4

0.2 1

1 1 1 1 1-1 -1 -1
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1 -1

FIG. 2. Distinction between the TW and WTA approaches. The first and last arrays represent the result obtained by applying a final linear
transformation on the output of the reservoir for a sine signal of length 8τ . The TW approach treats each sample of the signal independently,
leading to an accuracy between 0% and 100%. The WTA approach absorbs the errors occurring in the recognition of the whole signal by
averaging the results, leading to an accuracy of 100%.

White noise from various sources can be found in the exper-
imental system under the form of thermal, electrical or mag-
netic noise. To consider the noise from all these sources as a
single resultant quantity, an average peak-to-peak noise volt-
age amplitude of 50 mV is defined (corresponding to the blue
intervals in Fig. 3). The related standard deviation σ can be
retrieved using the 68−95−99.7 rule and Eq. (14).

σ ' ∆Vnoise

6
√

Rosc
(W1/2) (14)

A random signal normally distributed accordingly to σ and
centered on µ = 0 mV is then added to the input signal. The
power of the noise can then be expressed as Eq. (15), Eq. (16)
and Eq. (17). In practice, the noise in the input signal is negli-
gible and all the noise originates from the STVO. However, as
the analytical models do not model this internal noise, it has
to be artificially added to the input signal.

Pn = σ
2 (W) (15)

= 10× log10
(
σ

2) (dB) (16)
= 20× log10 (σ)+30 =−33.1 (dBm) (17)

The resulting signal-to-noise ratio can be computed using
Eq. (18), Eq. (19) and Eq. (20). In the base case related to
Fig. 3, it is equal to 30.5 dB. The level of noise can also be
swept on a defined range to assess its influence on the accu-

racy of the recognition.

SNR =
RoscI2

w

σ2 =
36×R2

oscI2
w

∆V 2
noise

(/) (18)

= 10× log10

(
36×R2

oscI2
w

∆V 2
noise

)
(dB) (19)

= 20× log10

(
6×RoscIw

∆Vnoise

)
(dB) (20)

The addition of all these contributions to the effective cur-
rent density signal injected into the STVO has to be sanity-
checked before every simulation. Indeed, if it exceeds the
second critical current density Jcr2 [22] the vortex state may
be expelled out of the STVO, restoring an uniform magneti-
zation and making the STVO useless for the recognition.

The results of the recognition were analyzed through two
indicators: the accuracy and the root-mean-square of the error
(RMSE) between the expected and actual outputs Tσ and T̂σ

(Eq. 21). The latter indicator was used as the accuracy was
close to 100% in the large majority of the cases due to the low
complexity of the task. High RMSE values indicate a non-
optimal recognition even if the classification is correct. These
indicators were averaged over all the 80 signals of the testing
database.

RMSE =

√(
Tσ − T̂σ

)2 (21)

Due to the high throughput of the simulations allowed
by the new models, two parametric studies have been per-
formed. The first one consisted in a sweep of the working
current intensity Iw to investigate the influence of the operat-
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FIG. 3. Example of the current map and the range sounded by the
dynamics of the oscillator. The black line corresponds to the work-
ing current intensity Iw, the red range corresponds to a input voltage
range of ∆V = 150 mV, and the blue ranges correspond to an ad-
ditional noise voltage range of ∆Vnoise = 50 mV. The curve is the
steady-state reduced position of the vortex core s∞ reached for each
input current intensity.

ing regime and the corresponding non-linearity on the treat-
ment of the data. The working current intensity was swept
from 1.001× Icr1 to the maximum allowed working current
intensity Iw,max defined in Eq. (22), ensuring that the total in-
jected current intensity was not exceeding the second critical
current intensity Icr2.

Iw,max = Icr2−
∆V +∆Vnoise

2Rosc
(22)

The other operating parameters are listed in Table II. For each
value in the range swept, the accuracy and the RMSE were
computed for both TW and WTA approaches, and so for both
s-LOTEA and s-HPTEA models. To avoid the random fluctu-
ations introduced with the background noise, the results were
averaged over 200 simulations for each value of the sweep
range. Note that the SNR also increases to a lesser extent dur-
ing the sweep of Iw. Indeed, as Iw was swept from 1.001× Icr1
to Iw,max, the SNR was swept between 30.1 and 33.6 dB ac-
cordingly to Eq. (20).

The second parametric study consisted in a sweep of the
signal-to-noise ratio (SNR) at a given working current inten-
sity. For a given value of the SNR (in dB), an additive Gaus-
sian white noise of the corresponding amplitude was added to
the signal (as the blue areas in Fig. 3). A SNR of 0 dB corre-
sponds to the case where the power of the input signal is equal
to that of the added white noise, while positive (resp. negative)
values correspond to the case were the power of the signal is
higher (resp. lower) than that of the added noise. The SNR
was swept from −20 dB to 100 dB, and the other operating
parameters are the same as the one listed in Table II (note how-
ever that in this case, ∆Vnoise is thus no longer constant, and
the working current intensity Iw if fixed to 1.05× Icr1 = 1.986

TABLE II. Input parameters for the working current intensity para-
metric sweep. Note that the amplitude of the noise is a statistical
value derived from the 68−95−99.7 rule.

Parameter Notation Value
DC resistance Rosc 140.6 Ω

Chirality C +1
Sampling rate Dt 50 ns
Amplitude of the input signal ∆V 150 mV
STVO diameter d 200 nm
Amplitude of the noise ∆Vnoise 50 mV

−33.1 dBm

mA). The same metrics as in the first parametric study (i.e.
the accuracy and the RMSE) were computed and averaged
over 200 simulations. The case where SNR ≤ 0 dB is ob-
viously not likely to happen in practice as it would mean that
one expects to successfully classify random signals, but was
nevertheless investigated for reasons detailed further.

The third and last task to which our new models were ap-
plied was the same speech recognition task as in Ref. [18].
This was meant to compare the simulated results with experi-
mental measurements. To do so, the same database and code
were used, and a similar neural network was designed. Only
the non-linear treatment of the data was adapted with the new
models.

The SNR of the experimental STVO used in Ref. [18] was
estimated. The noise in the input signals was considered neg-
ligible and the estimator ŜNR was computed as in Eq. (23),
Eq. (24) and Eq. (25)

ŜNR =
P̂signal

P̂noise
(23)

=
V̂ 2

RMS, signal

V̂ 2
RMS, noise

(24)

=

(
V̂ 2

signal

)
(

V̂ 2
noise

) (25)

where V̂signal and V̂noise are estimations of the amplitude of the
signal and the noise. Those were retrieved using the ampli-
tude of the raw output signal VAVG1 and the average of the
output signal over 16 measurements VAVG16 (see Eq. (26) and
Eq. (27)). Due to the different levels of noise in these two
output signals, the quality of their further classification is ex-
pected to be significantly different.

V̂signal ≈VAVG16 (26)

V̂noise ≈VAVG1−VAVG16 (27)
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TABLE III. Results of the benchmark task for the s-LOTEA and the
s-HPTEA models averaged over 2000 simulations using the param-
eters related to Fig. 3. The bold values correspond to the best per-
formance (i.e. highest accuracy or lowest RMSE) between the two
models.

Metrics s-LOTEA s-HPTEA

Training

Accuracy (WTA) 99.99% 100%
Accuracy (TW) 99.77% 99.94%
RMSE (WTA) 0.235 0.198
RMSE (TW) 0.350 0.300

Testing

Accuracy (WTA) 99.82% 99.73%
Accuracy (TW) 99.26% 99.39%
RMSE (WTA) 0.278 0.245
RMSE (TW) 0.402 0.348

RESULTS AND DISCUSSION

The comparison between the results of the s-LOTEA and
the s-HPTEA models during the benchmark task, averaged
over 2000 simulations, is presented in Table III. Note that the
two models are practically equally fast. Concerning the per-
formance at the benchmark task, one can observe that in all of
the cases but one, the s-HPTEA model yields slightly better
results than the s-LOTEA model. The averaging of the re-
sults allows to state that these differences are unlikely to be
randomly due to the simulated noise but rather to the models
themselves. More specifically, this is due to the better descrip-
tion of the complexity of the vortex core dynamics in the s-
HPTEA model. The s-HPTEA model, in addition to being the
most accurate so far, thus also yields the best results when per-
forming the benchmark task. This highlights the useful role
of the STVO dynamics complexity into their performance as
hardware neurons. In a more general way, it can be seen that
the accuracy is extremely close to that of a perfect recognition,
while needing a minimal amount of simulation time. Indeed,
the training of the neural network with 80 signals and the in-
ference of 80 other signals for testing took on average 0.7 s
on a computer equipped with a standard Intel Core i7 proces-
sor. It is estimated that the same process would require about
50 years of computational time to complete using full-MMS
simulations.

Influence of the working current intensity

The results obtained for the parametric sweep of the work-
ing current intensity with the two models are displayed in
Fig. 4. It can be seen that for higher working current inten-
sities, the performance of the neural network gets progres-
sively better. Indeed, the accuracy reaches an upper asymptote
at 100% and the RMSE decreases monotonically to a lower
asymptotic value. This observation is valid for both mod-
els. It means that the regime in which the STVO operates
when submitted to higher bias current intensities is beneficial
for the recognition. This is due to the fact that the behavior

FIG. 4. Test accuracy and RMSE of the neural network emulated
by a STVO, simulated using the s-LOTEA model (top) and the s-
HPTEA model (bottom) during the parametric sweep of the working
current intensity, averaged over 200 simulations. The green dashed
vertical lines represent the working current intensity used in the base
case (1.986 mA).

FIG. 5. Current map and range sounded by the dynamics of the os-
cillator when Iw = Icr1. The signal has 50% chance to lie below Icr1
and to prevent the triggering of the STVO dynamics.

of the STVO is less linear at higher current intensities, al-
lowing a better quality of data processing [18]. This can be
observed both under the physical and mathematical points of
view. Physically, this is explained by the fact that when Iw
decreases, the probability of the (noisy) signal to lie below the
first critical current intensity Icr1 increases. Hence, the signal
has a lower probability of triggering the vortex core oscilla-
tions required for the effective recognition of the data. For
example, if Iw = Icr1 as in Fig. 5, the signal has only 50%
chance to lie above Icr1 and to induce STVO oscillations. This
results in a decrease of the cognitive performance that can be
seen at the leftmost end of Fig. 4.

Mathematically, this can be interpreted by considering the
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TABLE IV. Results of the benchmark task for the s-LOTEA and the
s-HPTEA models averaged over 2000 simulations when the input
signal completely lies below Icr1.

Metrics s-LOTEA s-HPTEA

Training

Accuracy (WTA) 50.00% 50.00%
Accuracy (TW) 50.00% 50.00%
RMSE (WTA) 1.000 1.000
RMSE (TW) 1.000 1.000

Testing

Accuracy (WTA) 50.00% 100.00%
Accuracy (TW) 50.00% 100.00%
RMSE (WTA) 1.000 1.000
RMSE (TW) 1.000 1.000

s∞ curve represented in red and blue in Fig. 3 and Fig. 5. In-
deed, under Icr1 the vortex core is in the resonant state and its
final reduced position s∞ is equal to 0. As s(t) is the effective
mapping function that allows the treatment of the input data,
any data point lying under Icr1 is mapped to 0, and cannot be
made good use of to train the network non-linearly. This can
be confirmed by considering the performance of the network
when all the signal lies below Icr1. In this situation, the signal
is not able to trigger the oscillations of the vortex core and the
input signal is linearly mapped to 0. An accuracy correspond-
ing to random choice, i.e. 50%, is hence expected. This is
verified is Table IV. This phenomenon is made clearly visible
in the GIF attached in the supplementary material.

More generally, it can be noticed that the WTA approach
systematically yields better results (i.e. higher accuracy and
lower RMSE) than the TW approach as explained before. Fur-
thermore, it can also be seen that the asymptotic values ob-
tained with the s-HPTEA model are always better than that
obtained with the s-LOTEA model. Note however that this
observation may not be valid for lower current intensity val-
ues. For example at the working current intensity used for
the base case (1.896 mA, see the green dashed vertical line
in Fig. 4), the accuracy obtained with the WTA approach is
higher when using the s-LOTEA model than when using the
s-HPTEA model. This implies the existence of complex dis-
crepancies between the dynamics modeled by the two models.
All these observations show an undoubted agreement with the
results presented in the lower half of Tab. III, highlighting the
consistency of the simulations.

The existence of an optimal input current intensity is also
suspected. As a matter of fact as Iw increases, the probabil-
ity that the noise represented by the leftmost blue interval in
Fig. 3 and Fig. 5 lies above Icr1 increases as well. As a re-
minder, these blue intervals are ∆Vnoise wide, and ∆Vnoise is
approximately equal to 6σ

√
Rosc as stated in Eq. (14). Noisy

outliers are thus allowed to exceed Icr1. This noise has a detri-
mental influence on the vortex core dynamics and hinder the
network performance as it will be shown later. However this
decrease of the performance at high input current intensities
is limited. This is due to Iw being limited by Iw,max (see
Eq. (22)), hence also limiting the probability of noisy data to
reach or exceed Icr1.

TABLE V. Coefficients and maximum relative error of the general-
ized logistic approximations of the accuracy reached with respect to
the SNR (see Eq. (28) and Fig. 6).

s-LOTEA s-HPTEA
WTA TW WTA TW

Q 553 214 1180 259
B 0.33 0.28 0.39 0.31
ν 1.74 1.39 1.49 1.07
max(RE) 2.9% 2.4% 2.7% 2.6%

This kind of study demonstrates the high value of our new
analytical models. Those can be used to guide the design of
an experimental system, by specifying the optimal working
current intensity required to reach a given accuracy. In our
case, Iw should be about 2.05 mA in order to reach an accuracy
of 99.99% when considering the s-HPTEA model.

Influence of the noise

The results of the parametric study on the SNR are dis-
played in Fig. 6. It can be noticed that a sigmoid-like curve is
obtained when plotting the accuracy with respect to the SNR.
For positive SNRs, the accuracy reaches 100% due to the pro-
gressively less noisy system. As the SNR decreases, the ac-
curacy drops to 50%. This accuracy corresponds to random
choice between the two categories (sine and square). This is
due to the noise decreasing the quality of the dynamics down
to the point where no usable features can be found in the sig-
nals and leveraged by the neural network for the classification.
The resulting curves were fitted using a generalized logistic
approximation such as Eq. (28), whose coefficients and max-
imum relative errors are presented in Table V.

ACC(SNR) = 50+
50

(1+Qexp(−B SNR))1/ν
% (28)

These relations, which would not have been possible to ex-
press accurately without the new models, could help to es-
timate precious information about a physical prototype. For
example the expected accuracy for this recognition task can
be retrieved once the value of the SNR of the system has been
estimated. Alternatively, these relations could also be used to
know the minimum SNR value required to reach a given accu-
racy level. For example, by considering the s-HPTEA model,
it is possible to state that the SNR must be at least 22.77 dB to
reach an accuracy of 95% with the WTA approach. Consid-
ering a working current intensity of 1.986 mA (as in the base
case), this corresponds to a noise whose average peak-to-peak
amplitude is about 122 mV.

The interpretation of the RMSE plots is somewhat less triv-
ial. Under a SNR of about 20 dB, the RMSE explodes and has
to be truncated to 1.00. Indeed, as the random fluctuations
introduced with the noise become more and more predomi-
nant for lower SNRs, the resulting signal becomes less and
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FIG. 6. Test accuracy and RMSE of the neural network emulated by a
STVO, simulated using the s-LOTEA model (top) and the s-HPTEA
model (bottom) during the parametric sweep of the system SNR, av-
eraged over 200 simulations. The RMSE values were truncated to
1.00 due to high RMSE for negative SNRs. The red dashed lines
represent the piece-wise generalized logistic approximations from
Eq. (28) and Table V. The green dashed vertical lines represent the
SNR simulated in the base case (30.5 dB).

less similar to the bounded signals that were used to train the
network (Fig. 1). The occurrence of these unexpected high-
amplitude values in the network leads to a steep increase of
the RMSE. As the SNR increases above 20 dB, the progres-
sively cleaner dynamics leads to a monotonous decrease of the
RMSE as expected.

There does not seem to be any differences between the plots
of the two models in Fig. 6 when the noise is moderate or neg-
ligible (SNR > 10 dB). However one can observe that there
are no data for the accuracy under 10 dB with the s-HPTEA
model due to the simulations crashing. It is suspected that the
s-HPTEA model is more sensitive to noise due to its inherent
higher-order dynamics.

Comparison with experimental results

The two new models were used to perform the same speech
recognition task as in Ref. [18]. This task consists in classi-
fying spoken digits from 0 to 9 while involving various lev-
els of non-linearity in the pre-treatment of the data. Indeed,
the audio signals can be pre-processed using acoustic filters
with different degrees of non-linearity in order to ease their
further classification by the neural network. These acous-
tic filters allow to non-linearly extract acoustic features from
the input signal by decomposing it into a given set of fre-
quency channels. Among the non-linear filters used, the Mel-
frequency cepstral coefficients (MFCC) and Lyon’s cochlear
model (cochleagram) are based on mimicking the filtering that
occurs biologically [18]. The third non-linear filter, Spectro
HP, is a custom non-linear transformation of the complex de-

TABLE VI. Estimated SNR for the experimental measurements us-
ing different non-linear acoustic filters for speech recognition (data
from Ref. [18]).

Non-linear filter Estimation of the SNR (ŜNR)
MFCC 18.76 dB
Cochleagram 15.59 dB
Spectro HP 19.78 dB

composition of the data. The main result of this study is the
fact that when the level of non-linearity of the acoustic fil-
ter applied on the input data increases, the contribution of the
STVO-based neural network in the processing of the data de-
creases. This reinforces the idea that the effective role of the
neural network is to process the data non-linearly, and that
standalone non-linear acoustic filters can already achieve high
levels of recognition accuracy without the help of a neural net-
work [18]. It was also observed that in some cases, the simu-
lated results (with the phenomenological model based on the
non-linear magnetic oscillator theory) were surprisingly lower
than the experimental ones, hence motivating the development
of the more accurate physical models presented in this work.

The results obtained for the training and testing phases are
displayed in Fig. 7. In general, a very good agreement be-
tween the experimental results and the the results obtained
with our two analytical models is observed. It can be seen that
in all the cases but one, the results obtained with the two new
models are higher or equal to the experimental ones, which is
expected and supports their validity.

The SNRs estimated using Eq. (23) for the experimental
measurements performed using the MFCC, cochleagram and
Spectro HP filters are presented in Table VI. These positive
values induce that one can expect to observe an improvement
of the metrics (accuracy and RMSE) between the classifica-
tion of the raw VAVG1 output signals and the less noisy VAVG16
output signals. This expectation has been confirmed with
the experimental measurements related to the three acoustic
filters. As a matter of fact, the accuracy is systematically
higher during the classification of the averaged VAVG16 signals
than for the raw VAVG1 signals, and the RMSE systematically
lower. The only cases where the performance are not improv-
ing is when the accuracy is already equal to 100% with the
VAVG1 signals, or when the RMSE has reached a plateau such
as the one showed at high SNRs in Fig. 6. These observa-
tions validate the earlier results obtained from the parametric
sweep of the SNR, i.e. the quality of the recognition improves
significantly at higher SNRs.

CONCLUSION

Two new models based on the Thiele equation approach
were developed to simulate the dynamics of STVOs. The
combination of mathematical expressions with numerical re-
sults obtained with MMS allowed to obtain a physical descrip-
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FIG. 7. Comparison between the different contributions to the accuracy (or Word-Success-Rate, WSR), obtained with the WTA approach
during the training (top) and testing (bottom) phases, with different acoustic filters. The green columns are from Ref. [18]. The purple, orange
and pink columns represent respectively the accuracy obtained with the phenomenological model, the s-LOTEA model, and the s-HPTEA
model.

tion of the vortex core dynamics under a given input signal.
The resulting accuracy is at the same level as MMS. Addi-
tional mathematical and numerical adjustments were brought
to allow the analytical resolution of the models and acceler-
ate the simulations up to 9 orders of magnitude compared to
MMS. One of the model (s-LOTEA) truncates the transient
dynamic factor Γ(s) representing the non-linearity of the dy-
namics to the second order. The other model (s-HPTEA) al-
lows to take into account the whole complexity of the dynam-
ics non-linearity. A benchmark task consisting in the clas-
sification of sine and square periods was designed. It was
observed that the simulations ruled by the two new models re-
quire a similar amount of time, but the s-HPTEA model yields
slightly better results due to the consideration of the higher-
order complexity of the dynamics non-linearity. The speed
of the simulations allowed to perform two parametric studies
about the performances of the network during the benchmark
task, with respect to the working current intensity Iw and the
level of noise in the system. The first study allowed to deter-
mine an optimal operating current intensity for the use of a
experimental setup for this given task. The second study al-
lowed to drawn unprecedented relations between the accuracy
and the signal-to-noise ratio of the system. These two stud-

ies would have been impossible to perform in practice using
MMS, hence highlighting the value of our analytical models.
Finally, a comparison was made between the two new mod-
els and the values obtained for a speech recognition task in
Ref. [9, 18]. A very good agreement is obtained between the
new models and the experimental results. In almost all cases,
the simulated results are superior to the experimental results,
which is expected but was not seen in Ref. [18]. An improve-
ment of the recognition quality with the SNR of the system is
also observed experimentally.

The use of our new models based on the physical descrip-
tion of STVO dynamics is expected to lead to a major de-
velopment in the simulation of STVO-based neural networks.
The huge acceleration factor induced by their analytical res-
olution will allow to simulate larger and more complex net-
works, and to progressively get rid of the time multiplexing
technique. This will improve the efficiency of the simulations
of said neural networks, and will open the path to the design
of more complex experimental setups.
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