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We present a demonstration of image classification using a hardware-based echo-state network (ESN) that relies on
spintronic nanostructures known as vortex-based spin-torque oscillators (STVOs). Our network is realized using a
single STVO multiplexed in time. To circumvent the challenges associated with repeated experimental manipulation of
such a nanostructured system, we employ an ultrafast data-driven simulation framework called the data-driven Thiele
equation approach (DD-TEA) to simulate the STVO dynamics. We use this approach to efficiently develop, optimize
and test an STVO-based ESN for image classification using the MNIST dataset. We showcase the versatility of our
solution by successfully applying it to solve classification challenges with the EMNIST-letters and Fashion MNIST
datasets. Through our simulations, we determine that within a large ESN the results obtained using the STVO dynamics
as an activation function are comparable to the ones obtained with other conventional nonlinear activation functions
like the reLU and the sigmoid. While achieving state-of-the-art accuracy levels on the MNIST dataset, our model’s
performance on EMNIST-letters and Fashion MNIST is lower due to the relative simplicity of the system architecture
and the increased complexity of the tasks. We expect that the DD-TEA framework will enable the exploration of
more specialized neural architectures, ultimately leading to improved classification accuracy. This approach also holds
promise for investigating and developing dedicated learning rules to further enhance classification performance.

I. INTRODUCTION

The impact of artificial intelligence (AI) on various indus-
tries and our daily lives has been transformative. It has fa-
cilitated critical functions such as medical image recognition
for early disease diagnosis and optimization of manufacturing
processes1,2. However, the widespread use of AI has raised
concerns about its energy consumption and environmental im-
pact during resource-intensive training and large-scale infer-
ence phases3. To address these challenges, growing efforts to
develop energy-efficient alternatives with cutting-edge perfor-
mance are underway. Moreover, conventional computers, de-
spite decades of miniaturization and optimization, are nearing
their limits in computing power4,5. This observation prompted
researchers around the world to explore unconventional com-
puting architectures like quantum computers and neuromor-
phic systems inspired by the human brain6.

In response to these challenges, novel approaches in arti-
ficial intelligence have emerged, aiming to surpass the limi-
tations of conventional methods. One such paradigm is reser-
voir computing (RC), which involves injecting data into a neu-
ral reservoir: a random recurrent neural network comprising
nonlinearly activated units. This process projects data into
a higher-dimensional space, ensuring that the outputs of the
reservoir are linearly separable. Notably, only the weights
of the readout layer need optimization, leaving the reservoir
weights unchanged. Furthermore, the readout training step
can be performed linearly using a simple linear regression,
hence significantly reducing the training time compared to tra-
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ditional algorithms reliant on gradient descent and error back-
propagation. As the learning step can be performed in a sin-
gle shot over the whole training set, RC offers the advantage
of finding a global minimum of the loss function linearly, en-
suring determinism and reproducibility7. The fixed nature of
the reservoir makes it well-suited for hardware implementa-
tions, enabling the creation of dedicated hardware processors
to optimize performance and energy efficiency8. Intriguingly,
research has demonstrated that such reservoirs can be imple-
mented using a single nonlinear unit multiplexed in time with-
out sacrificing performance9–11. This feature further enhances
its potential for hardware-based solutions.

Efficient data classification through physical reservoir com-
puting has been demonstrated in various works, utilizing opto-
electronic systems12,13 as well as nonlinear oscillators known
as vortex-based spin-torque oscillators14 (STVOs). STVOs
are nanometer-sized magnetic tunnel junctions (MTJs) that
rely on spintronics to operate15. Spintronics, also referred to
as spin electronics, describe the physical phenomena related
to the transport of spin in magnetic materials and nanostruc-
tures. When an electric current is injected into these STVOs,
they exhibit stable oscillations of the electrical resistance.
By utilizing an amplitude-modulated signal, these oscillations
display a strong nonlinearity with respect to the signal ampli-
tude16, leading to oscillating voltages across the MTJ. STVOs
offer numerous advantages, such as low power consumption,
minimal noise and compatibility with complementary metal-
oxide-semiconductor (CMOS) technology17, making them at-
tractive candidates for nonlinear data transformation in RC-
based neuromorphic applications18–21.

Despite the progress in STVO-based hardware reservoirs,
a significant challenge lies in their development, optimiza-
tion and testing due to the laborious and costly process of
manipulating nanostructures repeatedly. To overcome these
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limitations, simulating STVOs and their complex dynamics
proves to be a more feasible approach. Micromagnetic sim-
ulations22 (MMS) offer highly accurate results but are time
and energy-consuming, making them impractical for simulat-
ing STVO-based neuromorphic computing and optimization.
A computationally lighter alternative is the Thiele equation
approach (TEA), which employs a single ordinary differential
equation for each space direction to model STVO dynamics23.
However, TEA is only quantitatively accurate in the resonant
regime i.e., when the magnetization does not oscillate. TEA is
merely qualitative in the steady and transient oscillatory states
i.e., when the magnetization undergoes stable oscillations or
switches from a stable state to another one. The very latter
states are however crucial for neuromorphic computing24.

A recent solution to this challenge is the data-driven Thiele
equation approach (DD-TEA) developed by Abreu Araujo
et al.. This semi-analytical model accurately describes the
STVO dynamics in both steady and transient states, achieved
by using numerical parameters extracted from a small set of
MMS24. Consequently, DD-TEA enables simulation with the
same level of accuracy as MMS but with a significant acceler-
ation factor of 9 orders of magnitude25.

This study aims to showcase the capability of a STVO-
based neural reservoir in achieving state-of-the-art accuracy
for image classification. Firstly, we will introduce our im-
plementation of a time-multiplexed echo state network (ESN)
using a single STVO. The data preprocessing and training pro-
cedures will be detailed. Next, we will explain how we sim-
ulate the STVO dynamics using DD-TEA. Subsequently, we
will evaluate the network’s performance in classifying various
types of images, such as handwritten digits from MNIST26,
characters from EMNIST-letters27 and clothing items from
Fashion MNIST28 (FMNIST). The STVO dynamics will then
be compared to more conventional forms of nonlinearity: the
reLU and the sigmoid functions. Those studies will be car-
ried for various number of virtual nodes in the ESN reservoir
to demonstrate the potential of DD-TEA for hyperparameter
optimization.

II. METHODS

A. Time-multiplexed reservoir computing

Reservoir computing employs a recurrent neural network
(RNN) with random and fixed internal weights. Each reser-
voir node exhibits a nonlinear behavior based on its internal
dynamics. The input layer directly feeds data into the reser-
voir, and the internal state of the Nθ nonlinear nodes are col-
lected in an output state matrix. The output state matrix is then
transformed into the final output using the weights of the read-
out layer. These readout layer weights are the only adjustable
parameters and can be learned using linear regression over the
entire training set during the training phase. This approach
enables RC to discover a global optimum of the loss function
while minimizing the number of parameters that need to be
learned.

Time-multiplexing enables the replacement of the reser-

FIG. 1. Reservoir computing using a time-multiplexed, single chain
connected echo state network. In this example, a 2-dimensional input
x is sent into a reservoir of Nθ = 3 virtual STVOs using the weights
of the random matrix M. Each virtual STVO is implemented by a
single STVO delayed every Dt nanoseconds. The final output Y is
reconstructed by linear combination from the output state matrix V
using the learned matrix W.

voir with a single nonlinear unit9. Instead of having multiple
nodes spatially interconnected within the reservoir, this singu-
lar node effectively emulates a network of virtual nodes linked
sequentially through time. This unique capability arises from
the transient state of the node, functioning as a short-term
memory that facilitates the connection of successive states
over time. Consequently, this approach simplifies the experi-
mental setup for easy manipulation and allows for the exclu-
sion of spatial interactions among nodes during simulations
by trading on the execution time11,29.

In our approach, images are injected into the virtual reser-
voir using a random connectivity matrix M with weights
uniformly distributed between 1 and −1, defining the fixed
weights of the input layer. These masked inputs are then in-
jected sequentially into the single STVO every Dt nanosec-
onds. We choose Dt to be shorter than the characteristic time
of the transient state of the STVO dynamics. The output state
matrix Vout is sequentially recorded and mapped to the output
matrix Y using the readout weights matrix W learned during
the training phase (Fig. 1).

The virtual network lacks recurrent connections as it is di-
rected towards future in a feed-forward fashion as represented
in the example in Fig. 1. This is compensated by an artificial
delay loop implemented by the matrix M in the input layer.
This architecture is equivalent to the simple-chain ESN mul-
tiplexed in time presented in ref.10. Indeed, the STVO re-
ceives Nθ random linear combinations of the input features
spaced in time by Dt nanoseconds, thus implementing a form
of feedback11. Note that as Nθ is chosen much higher than the
length of the input signal N f , the time-multiplexing technique
requires more execution time than for a spatially connected
network.

B. Modeling the STVO dynamics

In a STVO, the energetically preferred ground state of the
magnetization is identified by a non-uniform topological dis-
tribution referred to as vortex. The vortex results in a magne-
tization pattern that curls within the plane of the MTJ, while
the core of the vortex displays magnetization oriented outward
from the plane, as depicted in Fig. 2a. When the STVO is
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FIG. 2. (a) Radio-frequency oscillations of the vortex core (pink
circular arrow) and of its reduced position s(t) are triggered by (b)
the injection of an amplitude-modulated signal in the STVO. (c) The
non-linearity of s(t) can be retrieved experimentally by recording the
envelope Ṽ (t) of the voltage Vac(t) across the oscillator.

subjected to a time-varying amplitude-modulated input sig-
nal, such as the one shown in Fig. 2b, the vortex core un-
dergoes stable circular radiofrequency oscillations within the
plane of the STVO14,30,31, represented by the pink arrow in
Fig. 2a. The resistance of the STVO depends on the position
X(t) of the vortex core, a phenomenon known as the tunnel

magnetoresistance (TMR) effect32. Consequently, the elec-
trical resistance of the STVO exhibits similar high-frequency
dynamics, leading to an alternating voltage Vac(t) across the
oscillator due to Ohm’s law, as seen in the orange curve in
Fig. 2c. It’s worth noting that the input signal must be com-
bined with a dc current intensity Idc, referred to as the bias
current intensity, to drive the dynamics of the vortex core.

The non-linearity of the STVO dynamics can also be ob-
served in the time-dependent reduced position of the vortex
core, denoted as s(t) = ||X(t)||/R, with R being the radius of
the oscillator24. This value represents the normalized distance
between the vortex core and the center of the STVO. Experi-
mentally, this is analogous to considering the envelope of the
voltage Ṽ (t) across the STVO, as illustrated by the yellow
curve in Fig. 2c.

The reduced position s(t) can be analytically modeled
within the DD-TEA24,25 framework using Eq. (1). In this
equation, Dt (in nanoseconds) represents the sampling rate
constant of the input signal and the rate at which the masked
signal is sent into the STVO. The parameters α(t) and β (t)
are functions dependent on the amplitude of the input signal at
time t. Additionally, the parameter n(t) represents the level of
complexity accounted for in the model and is also a function
of the input signal amplitude at time t. To ensure the physi-
cal consistency of the model, α , β , and n are fitted to values
obtained through MMS24,25. The reduced position s(t) incor-
porates s(t −Dt) to capture the transient state of the STVO
when it is positioned between two different pieces of input.
In the context of reservoir computing, the model described in
Eq. (1) serves as the internal transfer function implemented by
the virtual STVOs in the reservoir8,12,13,21,29,33.

s(t) =
s(t −Dt)

n(t)

√√√√(1+
s(t −Dt)

n(t)

α(t)/β (t)

)
exp(−n(t)α(t)Dt)−

s(t −Dt)
n(t)

α(t)/β (t)

(1)

C. Pre-treating the data

The following sections describe how the classification of
handwritten digits from the MNIST dataset can be performed
by simulating STVO-based reservoir computing. The MNIST
dataset consists in 60,000 training images xi of digits between
0 and 9, and 10,000 testing images. The images are arrays of
28× 28 grayscale pixels characterized by a value between 0
and 255.

The images of the training set are first normalized between
0 and 1 (see Fig. 3a), and then flattened into 1-D vectors.
Then, their dimension is reduced from 784 to N f values us-
ing principal components analysis (PCA)34,35. Selecting the
N f = 44 most significant components as in (Fig. 3b) allows
explaining 80.33% of the variance in the training set. The
weights of these components are later used to extract the prin-
cipal components from the images of the testing set.

A reservoir containing Nθ nodes is then designed with only
one STVO using the time-multiplexing technique21,29,36. The
reservoir is a recurrent neural network characterized by a
mask M of dimension (Nθ ×N f ) that plays the role of con-
nectivity matrix. In our implementation, M is generated ran-
domly. Its values are uniformly distributed between −1 and
1. Each sample of input data xi is masked using M in order to
spread the input in the network (see Eq. (2) and Fig. 4).

x′i︸︷︷︸
(Nθ×1)

= M︸︷︷︸
(Nθ×N f )

xT
i︸︷︷︸

(N f ×1)

(2)

The response of the STVO is influenced by three parame-
ters. The first one is the bias current intensity Idc to which is
added the input signal25. The second parameter is the ampli-
tude of the input signal, spanning over a voltage range ∆V .
This parameter can also be used to tune the dynamics of the
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FIG. 3. (a) A sample from the MNIST training dataset, noted xi.
(b) Projection of the sample on the first 44 components extracted
using PCA. Note that xi is a line vector. The scales represent the
intensity of the pixels and of the signal after projection on the PCA
components.
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FIG. 4. (a) Example of a mask M representing a reservoir of Nθ =
100 nodes. (b) The masked input x′i from Fig. 3. The scales represent
the value of the mask elements and the intensity of the masked signal.

oscillator25. The third parameter is the sampling rate constant
Dt introduced with Eq. (1). The signal carried by x′i is scaled
in the [−∆V/2,∆V/2] range, then added to Idc and finally sam-
pled accordingly to Dt as represented in Fig. 5.

The output yi of the reservoir is then computed accordingly
to Eq. (3) by feeding the scaled signal from Fig. 5 into Eq. (1)
(Fig. 6).

yi := Ψ(x′i) := σSTVO(MxT
i ) (3)

D. Training the readout layer

This section describes the training procedure of the readout
layer. The outputs yi of the reservoir for the 60,000 samples of
the MNIST training set are computed in parallel accordingly
to the procedure described in the previous section. These out-
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FIG. 5. The masked input x′i scaled accordingly to Idc, ∆V and Dt .
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FIG. 6. Output yi of the STVO for the input signal in Fig. 5.

puts yi,train are then stacked horizontally to form the output
matrix Vout, train of dimension (Nθ ×60,000). The weight ma-
trix W is then computed following Eq. (4). Ttrain (dimensions
(10×60,000)) is the target matrix containing the 60,000 cat-
egorical targets li (i.e., a column vector of 0s, except at the in-
dex of the corresponding category where it is equal to 1) of the
training set stacked horizontally. This step consists in a linear
regression between the outputs of the reservoir and the de-
sired targets over the whole training set. Standard algorithms
such as ridge regression can be used, so that the regularization
parameter can be tuned accordingly to the problem to avoid
overfitting. In our case, the Moore-Penrose pseudo-inverse
matrix V†

out, train
37,38 is considered. This linear regression acts

as the only training process in the whole framework.

W︸︷︷︸
(10×Nθ )

= Ttrain︸ ︷︷ ︸
(10×60,000)

× V†
out, train︸ ︷︷ ︸

(60,000×Nθ )

(4)

E. Testing and classifying unseen data

To infer the classification of unseen data, the samples from
the testing set are processed in the same way as during the
training process (PCA, masking, scaling and STVO treat-
ment). The outputs yi,test of the STVO for all the samples of
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the testing set are stacked horizontally to form the inference
output matrix Vout, test of shape (Nθ ×10,000).

The estimated categories Ytest are obtained with Eq. (5).
Finally, the classification of each data sample T̂test is obtained
with Eq. (6), where the argmax function is performed column-
wise on Ytest.

Ytest︸︷︷︸
(10×10,000)

= W︸︷︷︸
(10×Nθ )

× Vout, test︸ ︷︷ ︸
(Nθ×10,000)

(5)

T̂test︸︷︷︸
(1×10,000)

= argmax (Ytest)︸ ︷︷ ︸
(10×10,000)

(6)

The overall process is depicted in Fig. 10 with a focus on
digit 8 and can be summarized by Eq. (7).

T̂test = argmax
(

Ttrain

([
σSTVO

(
MxT

i,train
)]60,000

1

)† [
σSTVO

(
MxT

i,test
)]10,000

1

)
(7)

"d" "y" "l"

"q" "s" "k"

"o" "a" "t"

FIG. 7. Some images randomly selected in the EMNIST-letters train-
ing set.

III. GENERALIZABILITY

To assess the generalizability of our implementation of sim-
ulated hardware reservoir computing, the training and infer-
ence processes described in the previous part are applied on
two additional image datasets. The first one is the EMNIST-
letters dataset: an extension of MNIST to handwritten let-
ters27. It consists of 124,800 training images and 20,800 test-
ing images, classified into 26 classes corresponding to the 26
letters in the alphabet (see Fig. 7). Each class contains lower
and upper case letters.

The second dataset is Fashion MNIST (FMNIST28) and is
composed of 60,000 training images and 10,000 testing im-
ages, all extracted from the Zalando website. The images
are separated into 10 classes representing clothing items: {t-
shirt/top, trouser, pullover, dress, coat, sandal, shirt, sneaker,
bag, ankle boot}. Some examples are shown in Fig. 8.

"sneaker" "pullover" "ankle boot"

"trouser" "dress" "shirt"

"coat" "t-shirt/top" "bag"

FIG. 8. Some images randomly selected in the FMNIST training set.

IV. PERFORMANCE EVALUATION

The performance of our time-multiplexed STVO-based
ESN at classifying images from the MNIST, EMNIST-letters
and FMNIST datasets will be assessed as follows. A STVO-
based ESN will be trained with each dataset accordingly to
the procedure described in the previous section. The num-
ber of PCA components selected will be chosen to ensure
an explained variance of 80%. This allows to reduce the di-
mension of the data from 784 to N f = 38 (resp. N f = 24)
for the EMNIST-letters (resp. FMNIST) dataset. The accu-
racy (the ratio of correctly classified samples in the testing
dataset) and the normalized root-mean-square error (NRMSE)
between each predicted output yi and the corresponding target

ti defined as NRMSE :=
√
(yi − ti)

2/ti will be averaged over
the entire testing set of each dataset. To decrease the influence
of the randomness of M, the metrics will be averaged over 10
iterations using different randomly generated versions of M.

The process will be repeated for a increasing number of
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TABLE I. Physical parameters for the DD-TEA model

Parameter Value
Dt 50 ns
Idc 2 mA
∆V 125 mV

virtual neurons in the reservoir. This will show the poten-
tial of DD-TEA for performing extensive parametric studies
and optimizing such hyperparameters. The physical parame-
ters plugged in DD-TEA will be fixed to the values presented
in Table I. Finally, the performance will be compared to the
same architecture with more conventional nonlinear transfer
functions such as the reLU and the sigmoid functions. This
will be achieved by artificially replacing Eq. (1) by the corre-
sponding expressions in the simulations. The identity function
will also be tested as an activation function to assess the role
of the nonlinearity in the learning ability of the ESN.

V. RESULTS

The accuracy and the NRMSE of our STVO-based ESNs
is depicted for the three datasets in Fig. 11. Without surprise,
the accuracy (resp. NRMSE) increases (resp. decreases) with
an increasing number of nodes in the reservoirs. As a matter
of fact, the number of nodes is directly proportional to the
number of tunable parameters in the model (i.e., the number
of elements in the learned matrix W).

The shaded area in each plot represents the range where the
input data x is projected into a smaller dimension space due
to the low amount of virtual neurons in the reservoir. Indeed,
if Nθ < N f , then the size of x′ is smaller than the original in-
put x, hence compressing information instead of projecting it
into a higher dimension space. Above this limit, the absence
of nonlinearity in the identity function leads to a saturation of
the performance. Considering a linear transfer function repre-
sented by σ (x′) = kx′, and by assuming that [kM]† [kM] ≈ I,
then Eq. (7) reduces to Eq. (8), which is independent of M and
hence of the reservoir internal structure itself.

T̂test = argmax
(

Ttrain
(
XT

train
)† XT

test

)
(8)

In all the cases, the accuracy and the NRMSE seems to tend
to a common value for all the nonlinear activation functions.
This implies that the STVO dynamics nonlinearity is equiv-
alent to that of these more conventional functions. This also
indicates that the nature of the nonlinearity is not determinant
in the case of an ESN when the number of learnable parame-
ters becomes high. However, any form of nonlinearity is still
required to improve the quality of the data classification when
Nθ > N f as showed by the high performance gap between the
nonlinear functions and the identity function.

The comparison of the accuracy of the classification using
the STVO-based ESN for the three datasets is represented in
Fig. 9. It can be seen that for a very low number of vir-
tual nodes in the reservoir, the accuracy reaches the random

100 101 102 103

Number of reservoir nodes
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80

100
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EMNIST
FMNIST

FIG. 9. Accuracy of the STVO-based ESN for the MNIST, EMNIST-
letters and FMNIST datasets. The dashed lines represent the random
choice accuracy levels linked to the number of categories in each
dataset (100%/26 = 3.85% and 100%/10 = 10%).

choice (i.e., 10% for MNIST and FMNIST, and 3.85% for
EMNIST-letters). The accuracy eventually reaches an accu-
racy of 98% on MNIST and an accuracy of 88.4% (resp.
86.9%) on the EMNIST-letters (resp. FMNIST) dataset with
5000 nodes in the ESN. We believe that the relatively low
score achieved in FMNIST is due to the lack of convolutional
treatment of the input features, something that is known to be
of prior importance for complex images classification. Con-
cerning EMNIST-letters, we suspect that the lower quality of
the recognition is due to the presence of lower case and up-
per case characters in each category, which can be regarded
as the presence of two distinct datasets with the same labels.
This assumption is consolidated by computing the average in-
traclass variance in each dataset. The variance of each class X
is computed accordingly to Varintra(X) =

(
∑i(xi −X)2

)
/|X|

and averaged over all the classes for each dataset. It is equal
to 3452.9 in MNIST, 4408.7 in EMNIST-letters and 3401 in
FMNIST. The average intraclass variance is about 28% bigger
in EMNIST-letters than in MNIST and FMNIST.

For comparison, the top accuracy reached on MNIST
known to this day is 99.87%39. While our solution performs
better than other reservoir computing-based approaches (in
software and hardware)40–42, other works indicate that higher
performance could be achieved by increasing further the num-
ber of nodes in the reservoir43. The top accuracy on EMNIST-
letters and FMNIST are respectively 95.96% and 96.91%44,45.
However, these works are based on neural networks far more
complex than our, involving many specialized layers such as
convolutional layers and attention modules. Therefore, these
solutions are not suited for hardware integration within a neu-
romorphic system.
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VI. CONCLUSION

We designed an echo-state network based on hardware non-
linear spintronics oscillators called STVOs. This neuromor-
phic system aims at solving cognitive tasks more efficiently
than conventional software solutions. The system has a sim-
ple architecture and only requires the learning of a small part
of the involved parameters. Moreover, the learning can be
performed linearly using the Moore-Penrose pseudoinverse,
as all the nonlinear treatment of the data takes place in a fixed
and random reservoir.

To overcome the limitations inherent to experimentally de-
veloping, optimizing and testing such a nanostructured sys-
tem, we used ultrafast simulations of the STVOs. This model
yields an explicit expression for the STVO dynamics that we
used as neuronal activation function. This approach allows to
simulate an entire STVO-based ESN accurately at ultra-high
speed compared to previously available frameworks.

We showed that a STVO-based ESN is able to classify
images of handwritten digits from the MNIST dataset with
state-of-the-art accuracy levels. Indeed, the nonlinearity of
STVO dynamics is equivalent to more conventional nonlin-
earities such as the reLU and the sigmoid functions. More-
over, the system is generalizable to other problems such as the
EMNIST-letters and the fashion MNIST datasets. We suspect
that better performance can be obtained on the two latter tasks
by designing a more specialized architecture, for example in-
volving convolutional data treatment before the reservoir46.

The use of the DD-TEA framework allowed to carry on ex-
tensive studies of the performance with respect to the number
of reservoir nodes. This could be reproduced with other hy-
perparameters such as the input and output shapes of the data
or the properties of the input matrix M. Physical operating
parameters having an influence on the STVO dynamics could
also be optimized by doing so, allowing an efficient prepara-
tion of an experimental setup.

We expect that STVO-based ESNs can be successfully used
for other tasks, such as time series prediction. Moreover, we
think that DD-TEA could allow to develop and test other neu-
ral architectures involving STVOs, and investigate other types
of learning rules to perform complex machine learning tasks
with increased efficiency.
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FIG. 10. Summary of the training and testing and inference processes focused on images of handwritten 8 digits from the MNIST dataset.
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