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Abstract Present artificial intelligence algorithms require extensive computations
to emulate the behavior of large neural networks, operating current computers near
their limits, which leads to high energy costs. A possible solution to this problem is
the development of new computing architectures, with nanoscale hardware compo-
nents that use their physical properties to emulate the behavior of neurons. In spite of
multiple theoretical proposals, there have been only a limited number of experimen-
tal demonstrations of brain-inspired computing with nanoscale neurons. Here we
describe such demonstrations using nanoscale spin-torque oscillators, which exhibit
key features of neurons, in a reservoir computing approach. This approach offers
an interesting platform to test these components, because a single component can
emulate a whole neural network. Using this method, we classify sine and square
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waveforms perfectly and achieve spoken digit recognition with state of the art re-
sults. We illustrate optimization of the oscillator’s operating regime with sine/square
classification.

1 Context

Artificial intelligence has attracted interest because it offers the possibility of ma-
chines outperforming humans at cognitive tasks such as image or speech recognition.
In a data driven society, artificial intelligence will become more and more essen-
tial as many industries begin to automate the analysis of ambiguous situations. The
algorithms at the base of this progress are artificial neural networks, which take
inspiration from the plasticity and non-linearity of biological neural networks. They
originate in the nineteen fifties, when the first algorithm allowing a machine to
learn abstract representations was developed [1]. Artificial neural networks are now
becoming popular, because the computation capabilities of microprocessors have
improved enough to run these complex algorithms [2] to solve useful tasks. Tasks
such as image recognition require computing the response of millions of formal
neurons and tuning tens of millions of parameters. Even though these algorithms
are still far from the complexity of the human brain, which has one hundred billion
neurons, running them on classical computer architectures already costs significantly
more energy than appropriate for the range of possible applications.

Modern computers are based on the Von Neuman architecture where the pro-
cessing unit is separated from the memory and data has to move sequentially back
and forth between these two units through a shared bus. While this architecture has
been responsible for the dramatic growth in computational capabilities, it is not well
adapted for energy efficient cognitive computing. While artificial neural networks
can perform comparably to humans for some particular tasks, they do so consuming
three to four orders of magnitude more energy than the human brain. The energy
efficiency of the brain comes in part from its entanglement of processing and mem-
ory, with biological neurons that process the information densely interconnected by
synapses that hold the memory. This observation motivates building brain-inspired
chips with analog components whose physics mimics the behavior of neurons. Bi-
ological neurons encode their information in the spikes they emit. One branch of
neuroscience models neurons as non-linear auto-oscillators and the brain as a large
assembly of interconnected oscillators that compute through their complex dynam-
ics. A brain-inspired chip based on these principles requires integrating millions of
non-linear oscillators in an area as small as one square centimeter. Simple arithmetic
shows that this scale requires nanoscale non-linear oscillators.

While there are proposals for neurons based on memristors and Josephson junc-
tions, these have not been experimentally demonstrated yet. Here we describe an
experimental realization of nanoscale neurons based on spin-torque oscillators [3, 4]
in the approach of reservoir computing. Reservoir computing offers a convenient
platform to test the potential of spin-torque oscillators since a single oscillator ex-
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cited by time-multiplexed inputs can generate a transient signal equivalent to the
response of a whole neural network. This approach greatly simplifies the experimen-
tal set-up, and has been successfully used, notably in optics, to perform complex
cognitive tasks such as speech recognition.

In this chapter, we summarize our work on reservoir computing using spin-torque
oscillators [5, 6]. Here, we emphasize the measurement system, the results of pattern
recognition tasks, and the optimization of the operating regime.We only touch lightly
on the single-node reservoir computing approach and the physics of the spin-torque
oscillators. Interested readers can findmore details in our original papers [5, 6] or the
other chapters in this volume. Sec. 2 presents our experimental implementation of
single node reservoir computing based on a single vortex spin-torque nano-oscillator.
Then, Sec. 3 presents the classification results obtained using this approach [5] for
two tasks, sine versus square classification (Sec. 3.1.1) and spoken digit recognition
(Sec. 3.2.2). Sec. 4 describes the optimization of the different parameters that can
be tuned to improve the recognition rate on the sine and square classification task.

2 Hardware implementation

2.1 Measurement set-up

The samples used for this demonstration are magnetic tunnel junctions (MTJs) with
a vortex magnetization in the free layer. The TMR of the junction is about 135% for
a resistance of 42Ω. For the dimensions used here (thickness L=6 nm and diameter
Φ=375 nm), the FeB layer has a remanent vortex magnetization. Under DC current
injection, the core of the vortex steadily gyrates around the center of the dot with a
frequency in the range 250MHz to 400MHz. Vortex dynamics driven by spin torque
are well understood [7], well controlled and have been shown to be particularly stable
[8], and in this case have an excellent signal to noise ratio (for more details see the
chapter by Taniguchi et al and reference [9]).

The measurement set-up is shown in Figure 1a. The experimental pre-processed
input signal +8= is generated by a high-frequency arbitrary-waveform generator and
injected as a current through the magnetic nano-oscillator. The preprocessed input
varies with a time step \. The sampling rate of the source is set to 200 MHz,
which corresponds to 20 points per interval of discretized time (\) in the reservoir
computing scheme for the spoken-digit recognition task and 500MHz (50 points per
interval) for the classification of sines and squares. The peak-to-peak voltage variation
in the input signal is 500 mV, which corresponds to peak-to-peak current variations
of 6mA (part of the incoming signal is reflected due to impedancemismatch between
the sample and the circuit). The bias conditions of the oscillator are set by a DC
current source and an electromagnet that applies a field perpendicular to the plane
of the magnetic layers. These bias conditions determine the operating point of the
oscillator. The oscillating voltage emitted by the nano-oscillator is rectified by a
planar tunnel microwave diode, with a bandwidth of 0.1 GHz to 12.4 GHz and a
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Fig. 1 a. The measurement set-up: A magnetic field delivered by an electromagnet (not shown)
and DC source fix the operating point of the oscillator. The signal to analyze is sent by an arbitrary
waveform generator. The magnetic tunnel junction emits an oscillating voltage. A diode allows
extraction of the oscillation amplitude. b. Oscillating response in grey and oscillation amplitude
figured in blue. c. Non-linear variation of the oscillation amplitude +̃ as a function of the input
current ��� at `0� = 430 mT. The purple shaded area highlights the typical excursion in the
voltage amplitude that results when an input signal of +8= = ±250mV is injected. Here ��� = 6.5
mA (vertical doted line). d. Upper graph: input signal sent by the arbitrary waveform generator
(magenta). Lower graph: transient response of the oscillator. The emitted oscillating voltage is
plotted in grey. The amplitude of the oscillation is figured by dashed blue lines. Adapted from
Torrejon et al [5].

response time of 5 ns. For the range of power and frequency used here, the response
of the diode can be considered as linear. The input dynamic range of the diode is
between 1 `Wand 3.15 mW, corresponding to a DC output level of 0 mV to 400 mV.
We use an amplifier to adjust the emitted power of the nano-oscillator to the working
range of the diode. The output signal is then recorded by a real-time oscilloscope.

2.2 Physical properties of the oscillator used for computation

The two main properties of the spin-torque nano-oscillator used for computation
are the non-linearity of the oscillation amplitude with the input DC current and the
relaxation of the oscillation amplitude. These two properties are necessary to ensure
the separation property and the fading memory needed for reservoir computing [10].
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2.2.1 Non-linearity of the oscillations amplitude

A reservoir realizes a non-linear transformation of an input signal. This non-linearity
allows the reservoir to project the initial problem into a different space in which
classes that were not linearly separable in the original space become linearly separa-
ble. The variable used for computation is the amplitude of the oscillations (Figure 1b).
The corresponding non-linearity is thus the non-linearity of the amplitude level as a
function of the DC current. Figure 1c shows this non-linearity for a magnetic field
of 400 mT. Below a threshold current (which is around 3 mA for this sample at this
magnetic field), the oscillator does not emit any signal because the spin torque is
not sufficient to compensate the damping and thus the spin polarized current does
not move the vortex core. Above this threshold current, the vortex core gyrates. The
amplitude of the oscillation is proportional to the radius of the vortex orbit B. The
non-linearity of the amplitude evolves approximately like _(�, �⊥)

√
� − �Cℎ [7].

Figure 1c illustrates the effect of the bias current on the oscillation amplitude
response +̃ to an AC current. As mentioned in Sec. 2.2.1, the input signal delivered
by the arbitrary waveform generator has an amplitude of 500 mV peak to peak
which corresponds to a 6 mA variation of injected current. Thus the input induces
variations on a limited part of the non-linear amplitude curve. This area is represented
in magenta in Figure 1c for a DC current of 6 mA. By changing the DC current, one
would move the pink area (which is centered on the bias DC current value) and thus
the typical excursion in the voltage amplitude which is explored. For computation,
it is not necessary that this excursion includes the threshold current (unlike with the
classical rectified linear activation function). Indeed the square root-like behavior of
the amplitude provides the non-linearity for separating the inputs in the framework
of reservoir computing.

The influence of the magnetic field is also crucial because it changes the shape
of the non-linear function itself. It changes the threshold current (for smaller fields
the threshold current is smaller) and the amplitude of the non-linearity. The optimun
choices for DC currents and magnetic fields is be discussed in Sec 4.

2.2.2 Relaxation of the oscillation amplitude

The second essential property for single node reservoir computing is a form of
memory. This property is important both for ensuring the connectivity between
temporal neurons and to ensure a fading memory. This demonstration only uses
the intrinsic memory due to the relaxation of the oscilator’s amplitude. When the
excitation of the vortex core changes suddenly, the amplitude of its orbit changes
more slowly. Thus, the orbit radius and the proportional amplitude also change
slowly. Figure 1d shows the variation of the oscillation amplitude when the oscillator
is subjected to a varying input signal. The response of the oscillator is plotted in
grey and the amplitude of the oscillation is highlighted in blue. Transitions in the
input signal are much more abrupt than in the oscillation amplitude signal. The
characteristic time of these changes is the relaxation time of the oscillator which is
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roughly inversely proportional to the frequency and the damping factor ()A4;0G ≈ 1
U 5

[11]). For our sample, the relaxation time is around 200 ns, except when the current
is close to the threshold. For the later regime, the relaxation time is larger but the
oscillation amplitude is low and very noisy, making it difficult to exploit this regime
for computation.

The relaxation is important to determine the discretization time \ which is used
to define the state of one temporal neuron in a ring of similar neurons. In order to
have connections between the temporal neurons, we should choose \ < )A4;0G . For
the work described in this chapter, \ = 100 ns. This choice is discussed in Sec. 4.

3 Results on classification tasks

3.1 Results on sine/square recognition task

3.1.1 Task

The sine and square waveform classification task has been used in other studies
[12] to evaluate the performance of reservoir computing based on an oscillator with
delayed feedback. The goal is to classify each point of the input as part of a sine by
returning an output 0, or as part of a square by returning an output 1. Each period of
sine and square is discretized into eight points giving 16 different cases to classify.
The input D(:) is composed of 1280 points (160 randomly arranged periods of sine
or square). The first half of the points are used for training (to find optimum output
weights,) and the second half for testing.

The different inputs to classify are shown as red dots in Figure 2a. The inputs
take 5 different values in a sine period and two different values in a square input. To
return the same output value for 5 different input values of a sine (or 2 in the case
of the square), the reservoir must be non-linear. In addition, in the sine period the
3rd and the 7th point have a value +1 and -1 that corresponds to the values taken
by the input in the square. So in the absence of memory, when the input value is +1
or -1 it is impossible to know whether these points belong to a sine or to a square.
Therefore this temporal pattern recognition task is not trivial because it needs both
the non-linearity and the memory of a neural network.

3.1.2 Protocol

Different steps of the protocol are represented in Figures 2a-c. Figure 2 shows how
the oscillator is driven by the input signal. The input D(:) (Figure 2a) is a sequence
of discretized sine and square periods. This discrete input is then preprocessed. This
preprocessed input is a time-multiplexed version of the inputs that different neurons
should receive in a standard spatial neural network. Here the neural inputs are the
value of D(:) multiplied by a coefficient ±1. This allows the oscillator response to
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Fig. 2 Sine/square classification process: a. The signal to classify composed of periods of sine and
square with the points to identify as belonging to a sine or to a square in red. b. The preprocessed
input signal for a sine (dark blue) and square (light blue) period for a mask with 12 values used. c.
Oscillation amplitude transient response to the oscillator signal. Figure extracted from Riou et al.
[6].

be a time-multiplexed version of a spatial neural-network response. Later we will
refer to these equivalent neurons as temporal neurons. If the preprocessed input
varies faster than the relaxation time of the oscillator, it creates connections between
the temporal neurons because the saturation is never reached so the oscillator state
always depends of its previous state. The preprocessed input � (C) for a sine and
square period is shown in Figure 2b. An input with only 12 temporal neurons is
chosen here. The reservoir emulates 12 temporal neurons with a mask containing
only binary values +1 and -1. The number of neurons is smaller than the optimum
number for better visualization in the figure. The results in Sec. 3.1.3 are based on a
24 temporal neurons reservoir. The time allocated to each neuron, \, is taken here to
be 100 ns, which we found to be optimal (see Sec. 4). When the oscillator receives
this preprocessed input, it emits a transient response. The amplitude of the emitted
oscillation measured experimentally is plotted in Figure 2c.
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Fig. 3 Mapping and reconstruction of the output: a. The oscillator voltage amplitude +̃ during a
single time segment g = # \ . Here, # = 12 neurons (12 samples +̃8 separated by the time step \)
are used to construct the output. b. Target for the output,

∑#
8=1 F8+̃8 , reconstructed from the output

voltages +̃8 and the weights F8 in each time segment g. c. The transient states of the oscillator give
rise to a chain reaction emulating a neural network with a ring structure. Figure extracted from
Riou et al. [6].

Figure 3a shows how to retrieve the mapping of the preprocessed input by the
single oscillator. This step is done off line on a computer. Discrete points are sampled
at every time step \. The values of these points correspond to the response of the
temporal neurons. Measuring these values gives the reservoir state. Sampling the
temporal traces of the oscillation amplitude properly requires aligning them with
the preprocessed input (misalignment can result in bad classification). The rest of
the process is a standard reservoir computing procedure. The neuron responses are
linearly combined to reconstruct the output. This step is shown in Figure 3b. The
coefficients of the linear combination are obtained by linear regression method. This
approach using a single oscillator with time multiplexing emulates the response of
a ring shape recurrent neural network. This architecture is represented in Figure 3c.
Response of this equivalent neural network is used to classify the sine and square
inputs.
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3.1.3 Set point dependent results

Figure 4a shows the best reconstructed output obtained by experimentally emulating
a 24-neuron network. The root mean square (RMS) deviation between target and
output is 11 %, which is small enough to distinguish between sines and squares
without any error (perfect classification) for the chosen choice of parameters:DC
current ��� = 7.2 mA, magnetic field `0H= 447 mT, input amplitude +8== 500 mV
(equivalent to 6 mA peak to peak). Figure 4a shows that if we trace a threshold line
(in blue) at 0.5, all the outputs for square inputs are over this threshold and all the
points for sine inputs are under this threshold. This perfect classification is achieved
if the RMS deviation between the target and the output is small enough, here, close
to 10 %.
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Fig. 4 a, Reconstructed output (red) and target (grey) in response to an input waveform with 80
randomly arranged sines and squares. Themagnetic field is 447mT, and the applied current 7.2 mA.
The results are based on 24 neurons separated by \ = 100 ns. b, Root mean-square deviation of
output-to-target deviations: map as a function of DC current � and magnetic field � .

Perfect classification is obtained for operating points (the values of the bias DC
current and the bias magnetic field) that give a small enough RMS deviation between
the target and the output. As seen in Figure 4b, the RMSdeviation varies from 10% to
more than 30% depending on the bias conditions.We interpret the optimal operating
point conditions in Sec. 4. After identifying this region of magnetic field and DC
current leading to high performance of the oscillator for sine/square classification,
we discuss the more complex task of spoken digit recognition.
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3.2 Results on spoken digit recognition

3.2.1 Task

Spoken digit recognition is a widely used benchmark task in the hardware reservoir
computing community [12, 13, 14, 15, 16]. The goal of the task is to recognize digits
from audio waveforms produced by different speakers. For this task, the inputs are
taken from the NIST TI-46 data corpus. The input consists of isolated english spoken
digits said by five different female speakers. Each speaker pronounces each digit ten
times. The set of ten digits said by all of the speakers is called an "utterance". The 500
audio waveforms are sampled at a rate of 12.5 kHz and have variable time lengths.
Only female speakers are chosen to benchmark with the literature. Adding male and
children increases the complexity of the task because it increases the variety of voice
tones and thus increases the dispersion of the data to classify.

3.2.2 Protocol

The recognition of audio waveforms requires an additional time-domain to time-
frequency-domain transformation, before inputing the signal into the reservoir. For
this purpose we used two different methods: a spectrogram and a cochlear model.
Both methods divide each word in several time intervals #g . Each of these time
sequences has a fixed length g and undergoes a frequency analysis through either
Fourier transform (spectrogram model; 65 channels, #g ∈ 24, ..., 67) or a more
complicated nonlinear approach (cochlear model; 78 channels, #g ∈ 14, ..., 41),
which uses several different notch filters followed by non-linear automatic gain
controllers [17].

After the transformation from time-domain to time-frequency domain, each word
is represented by a matrix with # 5 = 65 or # 5 = 78 rows representing the frequency
channels and #g columns representing the time (Figure 5b). These inputs are then
preprocessed being multiplied by a # 5 × #\ matrix (where #\ is the number of
neurons in the reservoir) called a mask, containing binary values. The resulting
input for the oscillator is #\ ×#g matrix. Here we are emulating #\ = 400 temporal
neurons, each of which is connected to all of the frequency channels for each time
interval with the binary input weights defined by the mask.

Each preprocessed input value is consecutively applied to the oscillator as a
constant current for a time interval of \ ≈ 100 ns (Figure 5c). This time is short
enough to guarantee that the oscillator is maintained in its transient regime so the
emulated neurons are connected to each other, but is long enough to let the oscillator
respond to the input excitation. The amplitude of the AC voltage across the oscillator
is recorded for offline post-processing (Figure 5d).

As for the previous task, the post-processing is then separated in two different
phases: training and testing. During the training phase, a part of the spoken digits
is used to determine the optimal sets of output weights F8, \ , where 8 indexes the
desired digit. The recorded traces are multiplied by the output weights F8, \ and
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the voltage across the junction (Fig. 1b). Spin-torque nano-oscillators 
are therefore simple and ultra-compact: their lateral size can be scaled 
down to 10 nm and their power consumption reduced to 1 μ W (ref. 13).  
Because they have the same structure as present-day magnetic mem-
ory cells, they are compatible with complementary metal–oxide– 
semiconductor (CMOS) technology, have high endurance, operate at 
room temperature and can be fabricated in large numbers (currently 
up to hundreds of millions) on a single chip14. Just as the frequency of 
a neuron is modified by the spikes received from other neurons, the 
frequencies of spin-torque nano-oscillators are highly sensitive to the 
magnetization dynamics of neighbouring oscillators to which they are 
coupled15,16. Together, these features of spin-torque nano-oscillators 
make them promising candidates for use in neuromorphic computing 
with large arrays of coupled oscillators17–21. However, they have yet to 
be used to perform an actual computing task.

Our idea is to exploit the amplitude dynamics of spin-torque 
nano-oscillators for neuromorphic computing. Their oscillation ampli-
tude ~V  (dotted blue line in Fig. 1b) is robust to noise, owing to the 
confinement that is provided by the counteracting torques exerted by 
the injected current and magnetic damping22. In addition, ~V  is highly 
nonlinear as a function of the injected current and depends intrinsically 
on past inputs15. Exploiting the amplitude dynamics of spin-torque 
nano-oscillators thus combines in one single nanodevice the two most 
crucial properties of neurons—nonlinearity and memory—the 

realization of which would otherwise require several electronics com-
ponents and a much larger on-chip area using conventional CMOS23. 
To compute, we encode neural inputs in the time-dependent current 
I(t) that is injected into the oscillator and use the amplitude response 
~V t( ) as the neural output.

Our nano-oscillators consist of circular magnetic tunnel junctions, 
with a 6-nm-thick free layer of FeB of 375-nm diameter, which have 
magnetic vortex ground states (see Methods). We measure the dynam-
ics of the signal amplitude ~V t( ) directly using a microwave diode. In 
Fig. 1c we show the nonlinear response of the amplitude ~V  to a d.c. 
current IDC: ∝ −~V I I( )DC th , where Ith is the current threshold for 
steady oscillations to occur15. Using an arbitrary waveform generator, 
we inject a varying current though the junctions in addition to the d.c. 
current, using the set-up schematized in Fig. 1d. The resulting voltage 
oscillations, recorded with an oscilloscope, are shown in Fig. 1e. The 
amplitude of the oscillator varies in response to the injected d.c. current, 
with a relaxation time that induces a few hundred nanoseconds  
memory of past inputs22.

Recent studies have revealed that time-multiplexing can enable a 
single oscillator to emulate a full neural network24–26. Here we use 
this approach—a form of “reservoir computing”4,5 (see Methods)—
to demonstrate the ability of spin-torque nano-oscillators to realize 
neuromorphic tasks. We perform a benchmark task of spoken-digit 
recognition. The input data, taken from the TI-46 database27, are 
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Figure 2 | Spoken-digit recognition. a–d, Principle of the experiment.  
a, Audio waveform corresponding to the digit 1 pronounced by speaker 1. 
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audio waveform is divided in intervals of duration τ. The cochlear model 
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form the filtered input. c, Pre-processed input (transformed from the 
purple shaded region in b). The filtered input is multiplied by a randomly 
filled binary matrix (masking process), resulting in 400 points separated 
by a time step θ of 100 ns in each interval of duration τ (τ =  400θ).  
d, Oscillator output. The envelope ~V t( ) of the emitted voltage amplitude of 
the experimental oscillator is shown (μ0H =  430 mT, IDC =  6 mA). The  
400 values of ~V t( ) per interval τ (~V ,i  sampled with a time step θ) emulate 
400 neurons. The reconstructed output ‘1’, corresponding to this digit, is 

obtained by linearly combining the 400 values of ~V ,i  sampled from each 
interval τ. e, f, Spoken-digit recognition rates in the testing set as a 
function of the number of utterances N used for training for the 
spectrogram filtering (e; μ0H =  430 mT, IDC =  6 mA) and for the cochlear 
filtering (f; μ0H =  448 mT, IDC =  7 mA). Because there are many ways  
to pick the N utterances, the recognition rate is an average over all  
10!/[(10 −  N)!N!] combinations of N utterances out of the 10 in the dataset. 
The red curves are the experimental results using the magnetic oscillator. 
The black curves are control trials, in which the pre-processed inputs are 
used for reconstructing the output on a computer directly, as described in 
Methods, without going through the experimental set-up. The error bars 
correspond to the standard deviation of the recognition rate, based on 
training with all possible combinations.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Fig. 5 Protocol for spoken digit recognition. a-d, Principle of the experiment. a, Audio waveform
corresponding to the digit 1 pronounced by speaker 1. b, Filtering to the frequency channels for
acoustic feature extraction. The audio waveform is divided in intervals of duration g. The cochlear
model filters each interval into 78 frequency channels (65 for the spectrogram model), which are
then concatenated as 78 (65) values for each interval, to form the filtered input. c, Pre-processed
input (transformed from the purple shaded region in b). The filtered input is multiplied by a
randomly filled binary matrix (masking process), resulting in 400 points separated by a time step
\ of 100 ns in each interval of duration g (g = 400\). d, Oscillator output. The envelope +̃ (C) of
the emitted voltage amplitude of the experimental oscillator is shown (`0� = 430mT, � = 6mA).
The 400 values of +̃ (C) per interval g (+̃8 , sampled with a time step \) emulate 400 neurons.
The reconstructed output ’1’, corresponding to this digit, is obtained by linearly combining the 400
values of +̃8 , sampled from each interval g. e,f, Spoken-digit recognition rates in the testing set
as a function of the number of utterances # used for training for the spectrogram filtering (a; �=
430 mT, �= 6 mA) and for the cochlear filtering (b; `0�= 448 mT, �=7 mA). Because there are
many ways to pick the # utterances, the recognition rate is an average over all 10!/[ (10−# )!# !]
combinations of # utterances out of the 10 in the dataset. The red curves are the experimental
results using the magnetic oscillator. The black curves are control trials, in which the pre-processed
inputs are used for reconstructing the output on a computer directly, without going through the
experimental set-up. The error bars correspond to the standard deviation of the recognition rate,
based on training with all possible combinations. Figure extracted from Torrejon et al. [5].

then averaged over the #g time steps. It results in 10 output values H8 , which should
ideally be equal to the target values H8 = 1.0 for the appropriate digit and 0.0 for
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the rest. In the training process, a fraction of the utterances are used to train these
weights; the rest of the utterances are used in the classification process to test the
results. The optimum weights are found by minimizing the difference between H̃8
and H8 for all of the words used in the training. The reconstruction of the outputs H8 is
a linear combination and thus finding the optimal weights for the training examples
is a linear regression process. If we consider the target matrix .̃ , which contains the
targets H̃8 for all of the time steps g used for the training, and the response matrix (,
which contains all neuron responses for all of the time steps g used for the training,
then the matrix, , which contains the optimal weights, is given by, = .̃†(, where
the symbol † represents the Moore-Penrose pseudo inverse [18].

During the testing phase, the weights are fixed and applied to the remaining
recorded traces. The ten reconstructed outputs corresponding to one digit are aver-
aged over all of the time steps g of the signal, and the digit is identified by taking
the maximum value of the ten averaged reconstructed outputs. The efficiency of the
recognition is evaluated by the word success rate, which is the rate of digits that are
correctly identified.

Training is achieved with training sets which can have variable size (number of
utterances used for the training) and composition (which combination of utterances
is used for the training). Different training sets led to different performances during
the testing phase. We trained the system using the ten digits spoken by the five
speakers. The only parameter that we changed is the number of utterances used for
the training. If we use # utterances for training, then we use the remaining 10 − #
utterances for testing. However, some utterances are very well pronounced whereas
others are hardly distinguishable. As a consequence, the resulting recognition rate
depends on which N utterances are picked for training in the set of ten (for example,
if # = 2, then the utterances picked for training could be the first and second, but
also the second and third, or the sixth and tenth, or any other of the 10!/(8!2!)
combinations of 2 picked out of 10). To avoid this bias, the recognition rates that we
present here are the average of the results over all possible combinations. The error
bars correspond to the standard deviation of the word recognition rate.

In order to see the contribution of the spin-torque oscillator in the recognition
process we compare the results obtained from the oscillator time traces with a control
trial. During the control trial, the pre-processed inputs are used for reconstructing
the output on a computer directly, without going through the experimental set-up.

3.2.3 Preprocessing dependant results

The improvement shown in the experimental results over the control results (see
Figure 5e) indicates that the spin-torque nano-oscillator greatly improves the qual-
ity of spoken-digit recognition, despite the added noise that is concomitant to its
nanometre-scale size. In this case, the extraction of acoustic features, achieved by
Fourier transforming the audio waveform over finite time windows, plays a minimal
part in classification. Without the oscillator (black line), the recognition rates are
consistent with random choices; with the oscillator (red line), the recognition rate
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is improved by 70 %, reaching values of up to 80 %. This example highlights the
crucial role of the oscillator in the recognition process.

Using the cochlear filtering (Figure 5f), which is the standard in reservoir com-
puting and has been optimized on the basis of the behavior of biological ears, we
achieve recognition rates of up to 99.6 %, as high as the state-of-the-art. Compared
to the control trial, the oscillator reduces the error rate by a factor of up to 15. Our
results with a spin-torque nano-oscillator are therefore comparable to the recogni-
tion rates obtained with more complicated electronic or macroscopic optical systems
(between 95.7 % and 99.8 % for the same task with cochlear filtering).

3.3 Conclusion

In this section, two tasks where used to evaluate the performance of reservoir com-
puting using the dynamics of a spin-torque nano-oscillator: sine/square classification
and spoken digit recognition. Sine/square classification is a simpler task but allows
testing the non-linear behavior and memory of the reservoir which are the key fea-
tures for good classification on more complex tasks. Using 24 temporal neurons, a
systematic study of classification for different magnetic fields and DC current bias
conditions was conducted. In the best case a 10 % root-mean-square deviation be-
tween the reconstructed output and the target was obtained, which allows perfect
classification of sine and square inputs. Best bias conditions where selected to move
on to the more complex task of spoken digit recognition.

Spoken digit recognition requires frequency filtering of audio files prior to sending
the input to the oscillator. Two filtering methods where studied: first a simple linear
spectrogram method and a more complex cochlear decomposition to benchmark
our result with the existing literature. Using the spectrogram method, the oscillator
improves the recognition up to 70% and the overall success rate is 80 % by training
on 90 % of the data. This result stresses the critical role of the nano-oscillator
for recognition. Using a cochlear decomposition, 99.6 % success rate was reached
which is state of the art results for both numerical and hardware methods. Also it is
important to note that training a linear classifier directly on a cochleogram enables
a success rate of 96 %. Thus cochlear decomposition already separates a part of the
input. The results in this chapter demonstrate neuromorphic computing performed
with a nanoscale "neuron".

For this demonstration, experimental parameters such as the temporal time scale
\ and the operating point (DC current and field) were specially selected to achieve
good classification results. The next section elucidates the influence of these different
parameters and gives guidelines to choose them appropriately.
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4 Optimizing the experimental parameters and data processing
for improved classification

4.1 Input sampling rate and amplitude

The memory and connectivity in single oscillator reservoir computing are obtained
by driving the oscillator with a quickly varying preprocessed input. The time interval
of the input variation is \. In this part, we discuss how to optimize \ to obtain the
best classification performance. Figures 6a-c illustrate the dynamical response of the
oscillation envelope for different values of \ and different amplitudes of the input.
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Fig. 6 a,b,c, +̃ oscillation amplitude variation of the oscillator response for three levels of input
300 mV (black), 400 mV (red) and 500 mV (blue) in the case of time step \ = 25 ns (a), \ = 100 ns
(b) and \ = 300 ns (c). d, Classification performance depending on \ : Root mean square of
output-to-target deviations as a function of the time step \ (separation between transient states of
the oscillator +̃8) for different amplitudes of the input signal (300, 400 and 500) mV when the target
is in exact phase with the input.

The input signal sent to the oscillator by the arbitrary waveform generator (AWG)
takes three different amplitude values (300 mV, 400 mV and 500 mV peak to peak).
Figures 6a-c represent the oscillation amplitude response for respectively \ = 25 =B
(Figure 6a), \ = 100 ns (Figure 6b) and \ = 300 ns (Figure 6c). For \ = 25 ns, the
time rate of the input ismuch shorter than the intrinsic relaxation time of the oscillator
measured around 200 ns (\ = )A4;0G/8) so the oscillator stays in the transient regime
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all the time. The memory effect is in this case strong but the variation of the emitted
oscillation amplitude signal is quite small. The oscillator does not have the time to
reach higher values. The amplitude of the oscillation also depends on the peak-to-
peak input amplitude and for an input amplitude of 300 mV, the signal is particularly
small.

At the other extreme for \ = 300 ns, which is greater than the oscillator relaxation
time (\ = 1.5)A4;0G), the measured amplitude response reaches its saturation regime
and the oscillator loses the memory of what happened one time step \ in the past.
But for such high \, the amplitude of the signal is much larger because the oscillator
reaches its saturation regime.

For an intermediate value \ = 100 ns (approximately )A4;0G/2), the oscillator still
remains in a transient regime with a large amplitude. Intuitively, we expect that the
trade off is to choose a value of \ that allows for a significant amplitude (so a decent
signal over noise ratio) and still has memory. It is important to note that a higher
input amplitude for a fixed \ always improves the signal to noise ratio.

Figure 6d presents the experimental RMS error result for sine and square classifi-
cation as a function of \. For 500 ns, increasing \ first decreases the RMS error until
an optimum after which the RMS error increase again. This optimum seems to be
around 100 ns. In the first part, the error decreases because the signal to noise ratio
increases but after )A4;0G/2 the error increases again because of a loss of memory.
This trend is also seen for an input amplitude of 400 mV. In that case, surprisingly
the optimum seems to occur for a smaller \ of 50 ns. However the general result is
always worse than for 500 mV input amplitude. Finally for an input amplitude of
300 mV, no clear trend is observed and the classification results are bad. For this
particular voltage amplitude input, there does not seem to be any values of \ that
have both sufficient memory and a sufficient signal-to-noise ratio.

4.2 Magnetic field and DC current dependence

4.2.1 Noise and amplitude ratio

Successful classification depends strongly of the operating point (Figure 7a). The
magnetic field and the applied bias DC current determine the amplitude variation and
the noise level of the oscillator signal. The amplitude of the measured signal and its
asymmetry are measured through amplitude variations in both positive and negative
directions, +D? and +3F (Figure 7b upper graph), while the noise in the voltage
amplitude is measured through the noise standard deviation Δ+ (Figure 7b lower
graph). We extract these parameters from the time traces of the voltage emitted from
the oscillator at each bias point, and plot +D?+3F (Figure 7c) and 1/Δ+ (Figure 7d)
as a function of the DC current � and field �.

Large oscillation amplitudes (red regions in Figure 7c) are obtained when the
applied magnetic field is low, in such case the magnetization is weakly confined
and when the applied DC current is high because it increases the spin torque on the
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Fig. 7 a, Root-mean-square deviation of output-to-target deviations: map as a function of DC
current � and magnetic field � . b, Amplitude variations in both positive and negative directions,
+D? and+3F (upper graph) and standard deviation of the noise in the voltage amplitudeΔ+ (lower
graph). c, Maximal reponse of the oscillator to the input (+D?+3F ) in the � -� plane. d, Inverse
of the noise level (1/Δ+ ) in the � -� plane. The threshold current �Cℎ is indicated in white dashed
line. e, Map of the ratio maximal amplitude to noise +D?+3F/Δ+ in the � -� plane, showing that
these parameters largely determine the performance of the oscillator (compare with a). Extracted
from Torrejon et al [5].

magnetization. High noise regions (blue regions in Figure 7d) are obtained just above
the threshold current for oscillation �Cℎ . In such conditions, the oscillation amplitude
increases rapidly as a function of the current and is sensitive to external fluctuations.
The dotted white boxes in Figures 7c and d (currents of 6 mA to 7 mA and magnetic
fields of 350 mT to 450 mT) highlight regions of high oscillation amplitude and
low noise. Such bias conditions give root-mean-square deviations below 15 %, and
there are no classification errors between sine and square waveforms. The similarity
between the map of +D?+3F/Δ+ (Figure 7e) and the map of root-mean-square error
(Figure 7a) confirms that the best conditions for the recognition are regimes with
both high oscillation amplitude and low noise.We expect that the requirement, which
we demonstrate here for a spin-torque oscillator, of a high signal-to-noise ratio to
obtain good classification would apply to any type of nanoscale oscillator used for
neuromorphic computing.

4.2.2 Amplitude level

Modifying the operating point modifies the oscillation amplitudes level as can be
observed in Figure 8a. In the case of our sample, the highest amplitude are obtained
for fields between 300 mT and 500 mT and for DC currents between 7 mA and 9
mA. During the reservoir computing experiments, we fix the magnetic field and we
vary the current that the sample receives.

First the magnetic field should be selected so the input signal induces large and
reproducible amplitude variation. By changing the the magnetic field, the threshold
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Fig. 8 a, Voltage amplitude +̃ of the oscillator in the steady state: map in the � -� plane. b, Voltage
amplitude +̃ of the oscillator in the steady state as a function of � for `0� = 273 mT (cyan),
`0� = 379 mT (magenta) and `0� = 537 mT (blue).

current and the derivative of +̃ with the current are modified (Figure 8b). +̃ is directly
linked to the vortex orbit B. The oscillation amplitude is given theoretically by the
following equation

+̃ (C) = _(�⊥, �)B(C), (1)

where B is the vortex radius and _ is a factor depending on the perpendicularmagnetic
field �⊥ and the DC current. B is a function of �/�Cℎ and evolves approximately as√
((�/�Cℎ) − 1) [7]. Because of this dependency, for low magnetic field such that

297 mT, the threshold current �Cℎ is high (5.9 mA) and +̃ varies very rapidly with
the input current � so the effect of a input current variation maybe not reproducible,
particularly in the proximity of �Cℎ . For higher magnetic field such as 537 mT, �Cℎ
is lower (4.0 mA) but the variation of +̃ with � is slow, such as the input current
variation results in small variation of +̃ . Finally, optimal variations are obtained for
intermediate values of field such as 379 mT, where the variations of input current
induce significant change of +̃ but the value of +̃ is not too sensitive to noise.

Once the magnetic field is fixed, the DC current should be selected to obtained
large variations of +̃ and ensure that +̃ does not evolve in a linear regime. The DC
current influences both the amplitude and the asymmetry of the measured time traces
as seen in Fig. 9 for three different DC currents, 4.5 mA, 6.5 mA and 9.0 mA. The left
part of the figure shows the non-linear dependence of the oscillation amplitude on
the current. The parts of this non-linear dependence explored for the chosen inputs
are represented in the colored areas. An input of 300 mV induces a typical variation
of DC current of roughly 4 mA. When the input is sent, the oscillator receives a
current in a range ±2 mA around the fixed DC current.

Changing theDCcurrent explores differentwindows of the non-linear dependence
of +̃ on �, which is set by the magnetic field. This exploration window is represented
by the vertical dashed lines. The central line is the DC current and the left and
right lines are the extreme current values received by the oscillator. The level of the
oscillation amplitude when no input signal is sent is the intersection of the central



18 Mathieu Riou et al

0 20 40

-150

-75

0

75

150

I
DC

= 6.5 mA

V
o
lt
a
g
e
 (

m
V

)

Time (s)

0 20 40

-150

-75

0

75

150

I
DC

= 4.5 mA

V
o
lt
a
g
e
 (

m
V

)

Time (s)

Input 

Oscillator amplitude (x20) 

0 20 40

-150

-75

0

75

150

I
DC

= 9.0 mA

V
o
lt
a
g
e
 (

m
V

)

Time (s)

a b 

d 

e f 

I (mA) 

I (mA) 

I (mA) 

0 

10 

20 

2 4 6 8 10 12 

c 

𝑉 
 (

m
V

) 
𝑉 
 (

m
V

) 
𝑉 
 (

m
V

) 

𝑉 
 (

m
V

) 
𝑉 
 (

m
V

) 
𝑉 
 (

m
V

) 

0 

10 

20 

2 4 6 8 10 12 

0 

10 

20 

2 4 6 8 10 12 

Fig. 9 Influence of the DC current on the oscillation amplitude variation: a,c,e +̃ as a function
of � . The blue (green) shaded area highlights the typical excursion in the voltage amplitude +D?
(+3F ) that results when an input signal of +8= = +150 V (+8= = −150 mV) is injected. b,d,f
The oscillator voltage amplitude, curves (in red) in response to the input waveform (in gray). Blue
(green) shaded area represents +D? (+3F ). Curves are plotted for `0� = 379mT and � = 9.0mA
(a,b), � = 6.5 mA (c,d) and � = 4.5 mA (e,f).

vertical line and the magenta curve +̃ = 5 (�). The higher oscillation amplitude value
reached is the intersection of the right vertical line and the curve +̃ = 5 (�). +D? ,
the difference between the highest value reached by the oscillator amplitude when
input is sent and the oscillation amplitude level due to the DC current, is represented
in blue. Similarly the lowest amplitude reached when the input is sent is situated
at the intersection between the left vertical line and the +̃ = 5 (�) curve. +3F , the
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difference between the oscillation amplitude due to the DC current and the lowest
value reached by the oscillator amplitude when input is sent, is represented in green.

The right part of Fig. 9 shows the time traces corresponding to these different
DC current conditions. +D? and +3F are shown for the time traces with the blue and
green areas. The apparent asymmetry of the measured time traces and the amplitude
variation is completely determined by the portion of the non-linearity +̃ = 5 (�) that
is explored. For 9.0 mA DC current value, the signal is small because the oscillation
amplitude evolves in a part of the non-linearity +̃ = 5 (�) where variations are small
(for high current the growth of +̃ with � slows down). For 6.5 mA, the lowest current
received by the oscillator is close but still greater than the threshold current (the
oscillator receives currents between approximately 4.5 mA and 8.5 mA).

The region close to the threshold current is the region with the largest oscillation
amplitude variations. The overall amplitude of the time traces for 6.5 mA is much
larger than for 9.0 mA. Because the variation of the oscillation amplitude is stronger
close to the threshold current, +3F (green) is much larger than the +D? (blue).
Decreasing the DC current to 4.5 mA gives saturation because the lowest DC current
into the oscillator is then 2.5 mA, which is under the threshold current of 4 mA.
Saturation, which maps a whole range of inputs to the same output, is detrimental
for computation because these inputs can not be differentiated in later computation.
In such cases the asymmetry of the time traces is reversed with +D? which is larger
than +3F .

An optimal oscillation amplitude variation requires an intermediatemagnetic field
(typically between 300 mT and 500 mT) so that the variation of the +̃ = 5 (�) non-
linearity is not so abrupt such as for low field (because of the high �Cℎ value) nor so
slow as for high fields. Once the magnetic field is determined, the DC current should
be chosen so that the lowest current sent to the oscillator from the AWG is close to
the threshold current, giving the largest variations of the oscillation amplitude.

4.2.3 Noise and non-linearity trade-off

Good classification requires non-linearity in the reservoir. The non-linearity allows
for separation of the different inputs by projecting the problem is into a different
space in the reservoir state. A large signal to noise ratio is also necessary, because
otherwise similar inputs can be mapped onto very different reservoir states because
of the noise so that the approximation property fails for the reservoir. Figure 10 shows
that the non-linearity and the voltage noise vary considerably with DC current and
magnetic field, suggesting that care is essential in selecting the working conditions.

To quantify the non-linearity, we computed the second derivative of the voltage
with the current m2+̃/m�2. Figure 10a shows that the largest non-linearities are close
to the threshold current where the emission of the oscillator varies strongly. The noise
level is evaluated by taking the standard deviation of the fluctuations of the voltage
amplitude due to the noise (similarly to the noise evaluated in Sec. 3 Figure 4).
Again, the noise also varies strongly close to the threshold current (Figure 10b).
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Fig. 10 a. The non-linearity m2+̃ /m� 2 of the oscillator: map in the � -� plane. b. Amplitude noise
Δ+̃ of the oscillator in the steady state: map in the � -� plane.

Since spin-torque oscillators have a small magnetic volume, thermal noise affects
the magnetization dynamics. The resulting voltage amplitude noise is large for large
non-linearity, which quantifies the sensitivity of the system to perturbations. The
correlation between voltage noise and non-linearity appears clearly in the comparison
of Fig. 10a and b. Neuron non-linearity is a key ingredient for classification as it
allows the separation of input data. On the other hand, noise in the response of
neurons is detrimental for classification as it directly affects the output. Figure 7a
shows the classification performance as a function of DC current and magnetic field.
We find good performance by choosing a bias point with intermediate non-linearity
and therefore intermediate noise, and where the neuron output changes strongly in
response to the AC input. Such bias points allow enough non-linearity to classify
while keeping a large enough signal to noise ratio to distinguish between outputs.

4.3 Conclusion

This section describes the experimental optimization of the \ time scale and the
operating point for reservoir computing with a spin-torque oscillator. The \ time
step plays both an important role in the memory of the reservoir (particularly when
intrinsic memory is the only memory mechanism) and in the connectivity between
the virtual neurons. A trade off leads to a value of \ short enough to assure memory
and connectivity and long enough to assure a satisfactory amplitude variation. We
find the best trade-off for \ = )A4;0G/2 where )A4;0G is the relaxation time of the
oscillator.

The operating point plays an important role in the optimization of these properties.
The magnetic field should be between 300 mT and 500 mT so the variation of the
non-linearity +̃ = 5 (�) is not too abrupt nor too smooth. At a given field, the DC
current should be large enough to avoid reaching the threshold current and low
enough to avoid a regime where +̃ variation saturates. Finding the correct operating
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point is a subtle balance, requiring both intermediate non-linearity and noise, while
avoiding the threshold current.

5 General conclusion

In this chapter we demonstrate neuromorphic computing with a nanoscale hardware
neuron. We use the non-linear transient dynamics of a single nanoscale spin-torque
oscillator to emulate the response of an entire neural network, using the reservoir
computing approach. The main physical properties used for this demonstration are
the non-linear dependence of the emitted voltage amplitude on the applied current
and the memory of the oscillator through the relaxation of the oscillation amplitude.

Using this non-linear dynamics, we classified sine and square waveforms, which
requires both memory and non-linearity and we recognized successfully digits spo-
ken by different speakers. For this last task we obtained a recognition rate of 99.6%
using cochlear decomposition prior to inputing the signal into the oscillator. With a
spectrogram as time-to-frequency transformation, the final recognition rate is smaller
(80 %) but the oscillator provides a higher gain.

The final recognition rate depends on the DC current and the magnetic field that is
applied to the oscillator, because these bias conditions modify the regime where the
oscillator operates determining both the signal-to-noise ratio and the non-linearity
of the oscillator response. The noise and the non-linearity are correlated for spin-
torque oscillators and optimal results are obtained for intermediate level of noise and
non-linearity. The rate and the amplitude of the input which is sent to the oscillator
also play an important role. The amplitude of the input influences the amplitude of
the signal emitted by the oscillator and better results are obtained for larger input
signals. The rate should ensure that the oscillator stays in a transient regime while
keeping large amplitude variations of the emitted signal. Optimal variation time for
the input is found for half of the oscillator relaxation time.

Using the reservoir computing approach, we show that spin-torque oscillators are
stable enough and have both enough non-linearity and enough memory to perform
neuromorphic computing. In this work we used a time-multiplexing approach for
computation, allowing for the use of a single oscillator. This work combined with
the ability of these oscillators to couple together opens the path to build large scale
hardware neural networkswith dense arrays of interconnected spin-torque oscillators.
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