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Neurons in the brain behave as nonlinear oscillators, which develop 
rhythmic activity and interact to process information1. Taking 
inspiration from this behaviour to realize high-density, low-power 
neuromorphic computing will require very large numbers of 
nanoscale nonlinear oscillators. A simple estimation indicates that 
to fit 108 oscillators organized in a two-dimensional array inside 
a chip the size of a thumb, the lateral dimension of each oscillator 
must be smaller than one micrometre. However, nanoscale devices 
tend to be noisy and to lack the stability that is required to process 
data in a reliable way. For this reason, despite multiple theoretical 
proposals2–5 and several candidates, including memristive6 and 
superconducting7 oscillators, a proof of concept of neuromorphic 
computing using nanoscale oscillators has yet to be demonstrated. 
Here we show experimentally that a nanoscale spintronic oscillator 
(a magnetic tunnel junction)8,9 can be used to achieve spoken-digit 

recognition with an accuracy similar to that of state-of-the-art neural 
networks. We also determine the regime of magnetization dynamics 
that leads to the greatest performance. These results, combined with 
the ability of the spintronic oscillators to interact with each other, and 
their long lifetime and low energy consumption, open up a path to 
fast, parallel, on-chip computation based on networks of oscillators.

Nanoscale spintronic oscillators (or spin-torque nano-oscillators) 
are nanoscale pillars composed of two ferromagnetic layers separated 
by a non-magnetic spacer (Fig. 1a). Charge currents become spin- 
polarized when they flow through these junctions and generate  
torques on the magnetizations10,11 that lead to sustained magnetization 
precession at frequencies of hundreds of megahertz to several tens of 
gigahertz. Magnetization oscillations are converted into voltage oscilla-
tions through magneto-resistance. The resulting radio-frequency oscil-
lations, of up to tens of millivolts (ref. 12), can be detected by measuring 
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Figure 1 | Spin-torque nano-oscillator for neuromorphic computing.  
a, Schematic of a spin-torque nano-oscillator, consisting of a  
non-magnetic spacer (gold) between two ferromagnetic layers, with 
magnetization m for the free layer (blue) and M for the fixed layer (silver).  
A current injected into the oscillator induces magnetization precessions of m.  
For our experiments we used a nano-oscillator with a diameter of 375 nm; 
however, diameters of 10–500 nm are possible. b, Measured a.c. voltage 
emitted by the oscillator as a function of time, ω ϕ= +~V V t t( )cos( )osc ,  
for a steady current injection of 7 mA at an external magnetic field 
μ0H =​ 430 mT. The dotted blue lines highlight the amplitude ~V . c, Voltage 
amplitude ~Vas a function of d.c. current IDC at μ0H =​ 430 mT (blue 
squares). The purple shaded area highlights the typical excursion in the 

voltage amplitude that results when an input signal of Vin =​ ±​250 mV is 
injected (here for IDC =​ 6.5 mA (vertical dotted line) and μ0H =​ 430 mT). 
d, Schematic of the experimental set-up. A d.c. current IDC and a rapidly 
varying waveform that encodes the input Vin are injected into the spin-
torque nano-oscillator. The microwave voltage Vosc emitted by the 
oscillator in response to the excitation is measured with an oscilloscope. 
For computing, the amplitude ~V  of the oscillator is used, and measured 
directly with a microwave diode. e, Input Vin (top; magenta) and measured 
microwave voltage Vosc (bottom; grey) emitted by the oscillator as a 
function of time. Here IDC =​ 6 mA and μ0H =​ 430 mT. The envelope ~V  of 
the oscillator signal is highlighted in blue. For computing it is sampled 
periodically, as shown by the blue circles labelled V1–7.
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the voltage across the junction (Fig. 1b). Spin-torque nano-oscillators 
are therefore simple and ultra-compact: their lateral size can be scaled 
down to 10 nm and their power consumption reduced to 1 μ​W (ref. 13).  
Because they have the same structure as present-day magnetic mem-
ory cells, they are compatible with complementary metal–oxide– 
semiconductor (CMOS) technology, have high endurance, operate at 
room temperature and can be fabricated in large numbers (currently 
up to hundreds of millions) on a single chip14. Just as the frequency of 
a neuron is modified by the spikes received from other neurons, the 
frequencies of spin-torque nano-oscillators are highly sensitive to the 
magnetization dynamics of neighbouring oscillators to which they are 
coupled15,16. Together, these features of spin-torque nano-oscillators 
make them promising candidates for use in neuromorphic computing 
with large arrays of coupled oscillators17–21. However, they have yet to 
be used to perform an actual computing task.

Our idea is to exploit the amplitude dynamics of spin-torque 
nano-oscillators for neuromorphic computing. Their oscillation ampli-
tude ~V  (dotted blue line in Fig. 1b) is robust to noise, owing to the 
confinement that is provided by the counteracting torques exerted by 
the injected current and magnetic damping22. In addition, ~V  is highly 
nonlinear as a function of the injected current and depends intrinsically 
on past inputs15. Exploiting the amplitude dynamics of spin-torque 
nano-oscillators thus combines in one single nanodevice the two most 
crucial properties of neurons—nonlinearity and memory—the 

realization of which would otherwise require several electronics com-
ponents and a much larger on-chip area using conventional CMOS23. 
To compute, we encode neural inputs in the time-dependent current 
I(t) that is injected into the oscillator and use the amplitude response 
~V t( ) as the neural output.

Our nano-oscillators consist of circular magnetic tunnel junctions, 
with a 6-nm-thick free layer of FeB of 375-nm diameter, which have 
magnetic vortex ground states (see Methods). We measure the dynam-
ics of the signal amplitude ~V t( ) directly using a microwave diode. In 
Fig. 1c we show the nonlinear response of the amplitude ~V  to a d.c. 
current IDC: ∝ −~V I I( )DC th , where Ith is the current threshold for 
steady oscillations to occur15. Using an arbitrary waveform generator, 
we inject a varying current though the junctions in addition to the d.c. 
current, using the set-up schematized in Fig. 1d. The resulting voltage 
oscillations, recorded with an oscilloscope, are shown in Fig. 1e. The 
amplitude of the oscillator varies in response to the injected d.c. current, 
with a relaxation time that induces a few hundred nanoseconds  
memory of past inputs22.

Recent studies have revealed that time-multiplexing can enable a 
single oscillator to emulate a full neural network24–26. Here we use 
this approach—a form of “reservoir computing”4,5 (see Methods)—
to demonstrate the ability of spin-torque nano-oscillators to realize 
neuromorphic tasks. We perform a benchmark task of spoken-digit 
recognition. The input data, taken from the TI-46 database27, are 
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Figure 2 | Spoken-digit recognition. a–d, Principle of the experiment.  
a, Audio waveform corresponding to the digit 1 pronounced by speaker 1. 
b, Filtering to frequency channels for acoustic feature extraction. The 
audio waveform is divided in intervals of duration τ. The cochlear model 
filters each interval into 78 frequency channels (65 for the spectrogram 
model), which are then concatenated as 78 (65) values for each interval, to 
form the filtered input. c, Pre-processed input (transformed from the 
purple shaded region in b). The filtered input is multiplied by a randomly 
filled binary matrix (masking process), resulting in 400 points separated 
by a time step θ of 100 ns in each interval of duration τ (τ =​ 400θ).  
d, Oscillator output. The envelope ~V t( ) of the emitted voltage amplitude of 
the experimental oscillator is shown (μ0H =​ 430 mT, IDC =​ 6 mA). The  
400 values of ~V t( ) per interval τ (~V ,i  sampled with a time step θ) emulate 
400 neurons. The reconstructed output ‘1’, corresponding to this digit, is 

obtained by linearly combining the 400 values of ~V ,i  sampled from each 
interval τ. e, f, Spoken-digit recognition rates in the testing set as a 
function of the number of utterances N used for training for the 
spectrogram filtering (e; μ0H =​ 430 mT, IDC =​ 6 mA) and for the cochlear 
filtering (f; μ0H =​ 448 mT, IDC =​ 7 mA). Because there are many ways  
to pick the N utterances, the recognition rate is an average over all  
10!/[(10 −​ N)!N!] combinations of N utterances out of the 10 in the dataset. 
The red curves are the experimental results using the magnetic oscillator. 
The black curves are control trials, in which the pre-processed inputs are 
used for reconstructing the output on a computer directly, as described in 
Methods, without going through the experimental set-up. The error bars 
correspond to the standard deviation of the recognition rate, based on 
training with all possible combinations.
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audio waveforms of isolated spoken digits (0 to 9) pronounced by five  
different female speakers (Fig. 2a). The goal is to recognize the digits, 
independent of the speaker.

Neural networks classify information through chain reactions:  
neuron after neuron, each input undergoes a series of nonlinear  
transformations28. In a trained network, the same digit always triggers 
a similar chain reaction even if it is pronounced by different speakers,  
whereas different digits generate different chain reactions, thus allow-
ing pattern recognition. An input can trigger a chain reaction in space 
by using ensembles of neurons, wherein the state of downstream  
neurons depends on the state of upstream neurons. But an input can 
also trigger a chain reaction in time by constantly exciting a single 
nonlinear oscillator with memory: in this case, the state of the oscillator 
in the future depends on the state of the oscillator in the past. We use 
the latter approach, which simplifies the hardware because only one 
oscillator is needed, but requires preprocessing of the input: each point 
of the audio waveform is converted into a fast-paced binary sequence 
that is designed to generate a chain reaction of amplitude variations in 
the oscillator24.

The procedure is illustrated in Fig. 2a–d and detailed in Methods. 
Because acoustic features are mainly encoded in frequencies29, we filter 
each audio file into Nf different frequency channels (a standard proce-
dure in speech recognition), which are then concatenated in intervals 
of duration τ (Fig. 2b). For preprocessing, each of these segments is 
multiplied by a randomly filled binary matrix (of dimension Nf ×​ Nθ). 
In this way, each point of the input audio waveform is converted into a 
binary sequence of duration τ that is composed of Nθ points separated 
by a time step θ (τ =​ Nθθ). When this preprocessed input (Fig. 2c) is 
applied as a current to our spin-torque nano-oscillator, the resulting 
amplitude variations ~V t( ) (Fig. 2d) function as a set of Nθ neurons 
coupled in time (we take Nθ samples ~Vi per interval τ). For spoken-digit 
recognition, we emulate Nθ =​ 400 neurons and use θ =​ 100 ns (about 
one-fifth of the relaxation time of the oscillators) to set the oscillator in 
a transient state.

The responses of the voltage amplitude ~V t( ) of the oscillator are 
recorded for each utterance of each spoken digit. The goal of the sub-
sequent training process, performed on a computer, is to choose a 
linear combination of these responses (sets of ~Vi in each t) for each 
digit such that the sum is one for that digit and zero for the rest  

(see Methods). Because each digit has been pronounced ten times by 
each of the five speakers, we can use some of the data to determine the 
coefficients (training), and the rest to evaluate the recognition perfor-
mance (testing); see Methods. To assess the effect of our oscillator on 
the quality of recognition, we always perform a control trial without 
the oscillator. In that case, the preprocessed input traces are used to 
reconstruct the outputs on the computer directly, without going 
through the experimental set-up.

The improvement shown in the experimental results over the con-
trol results (see Fig. 2e, f) indicates that the spin-torque nano-oscillator 
greatly improves the quality of spoken-digit recognition, despite the 
added noise that is concomitant to its nanometre-scale size. In Fig. 2e  
(linear spectrogram filtering), we present an example in which the 
extraction of acoustic features, achieved by Fourier transforming the 
audio waveform over finite time windows, plays a minimal part in 
classification. Without the oscillator (black line), the recognition rates 
are consistent with random choices; with the oscillator (red line), the 
recognition rate is improved by 70%, reaching values of up to 80%. 
This example highlights the crucial role of the oscillator in the recogni-
tion process. Using nonlinear cochlear filtering30 (Fig. 2f), which is the 
standard in reservoir computing24–26 and has been optimized on the 
basis of the behaviour of biological ears, we achieve recognition rates 
of up to 99.6%, as high as the state-of-the-art. Compared to the control 
trial, the oscillator reduces the error rate by a factor of up to 15. Our 
results with a spin-torque nano-oscillator are therefore comparable 
to the recognition rates obtained with more complicated electronic 
or optical systems (between 95.7% and 99.8% for the same task with 
cochlear filtering)23–26,29.

The optimal operating conditions for pattern recognition with our 
spin-torque nano-oscillator are determined by the oscillation amplitude 
and noise. We use a simpler task, classification of sine and square wave-
forms with the same period25, to investigate the ability of the oscillator 
to classify waveforms in a wide range of injected d.c. currents IDC and 
applied magnetic fields μ0H (see Methods). As can be seen in Fig. 3a, 
the quality of pattern recognition, characterized by the root-mean-
square of deviations between the reconstructed output and the target, 
varies from 10% to more than 30% depending on the bias conditions. 
The oscillator performs well when it responds strongly to the time- 
varying preprocessed input, with large amplitude variations in both the 
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Figure 3 | Conditions for optimal waveform classification and 
identification of important oscillator properties. The task consists of 
recognizing sine waveforms from square ones with the same period. The 
target for the output that is reconstructed from the oscillator’s response is 
one for square, zero for sine. We emulate 24 neurons ~Vi, τ =​ 24θ. a, Root-
mean-square (r.m.s.) deviation of output-to-target deviations: map as a 
function of d.c. current IDC and magnetic field μ0H. b, Extraction of 
parameters from the time traces of the oscillator’s response. Top, 
maximum positive (Vup) and negative (Vdw) variations in the oscillator’s 
amplitude in response to the varying pre-processed input. Bottom, noise  

Δ​V of the voltage amplitude ~V  at steady state under IDC. c, Maximal 
response (VupVdw) of the oscillator to the input: map in the IDC–μ0H plane. 
d, Inverse of the noise amplitude 1/Δ​V: map in the IDC–μ0H plane. The 
threshold current Ith is indicated by a white solid line. In c and d, the 
optimal range of bias conditions for waveform classification is marked  
by a white dashed rectangle (currents of 6–7 mA and magnetic fields of 
350–450 mT). e, Map of the ratio of maximal amplitudes to noise VupVdw/Δ​V,  
showing that these parameters largely determine the performance of the 
oscillator (compare with a).
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positive and negative directions, Vup and Vdw, respectively (Fig. 3b, top). 
On the other hand, it performs poorly when the noise in the oscillator 
Δ​V (the standard deviation of the noise in the voltage amplitude) is 
high (Fig. 3b, bottom). As shown in Fig. 3b, we extract these parameters 
from the time traces of the voltage emitted from the oscillator at each 
bias point, and plot VupVdw (Fig. 3c) and 1/Δ​V (Fig. 3d) as a function 
of the d.c. current IDC and field μ0H. The red regions of large oscillation 
amplitudes in Fig. 3c correspond to low magnetic fields, in which the 
magnetization is weakly confined, and to high currents, for which the 
spin torque on magnetization is maximal. The blue regions of high 
noise in Fig. 3d correspond to areas just above the threshold current Ith 
for oscillation, in which the oscillation amplitude ~V  is growing rapidly 
as a function of current and is becoming sensitive to external  
fluctuations15. As can be seen by comparing Fig. 3c and d, the range of 
bias conditions highlighted by the dotted white boxes (currents of 
6–7 mA and magnetic fields of 350–450 mT) features wide variations in 
oscillation amplitudes and low noise. In this region, root-mean-square 
deviations below 15% are achieved, and there are no classification  
errors between sine and square waveforms. The similarity between the 
map of VupVdw/Δ​V (Fig. 3e) and that of the classification performance  
(Fig. 3a) confirms that the best conditions for classification correspond 
to regions of optimal compromise between low noise and large ampli-
tude variations. The necessity of a high signal-to-noise ratio for efficient 
neuromorphic computing, highlighted here for magnetic oscillators, is 
a general guideline that applies to any type of nanoscale oscillator.

As a conclusion, our pattern-recognition results show that simple, 
ultra-compact spintronic oscillators have all of the properties that 
are needed to emulate collections of neurons: nonlinearity, memory 
and stability. The ability of groups of these oscillators to mimic neural  
connections by influencing the behaviour of one another through 
current and magnetic-field coupling opens up a route to realizing 
large-scale neural networks in hardware, which exploit magnetization 
dynamics for computing15–21.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Methods
Samples. Magnetic tunnel junction (MTJ) films with a stacking structure of 
buffer/PtMn(15)/Co71Fe29(2.5)/Ru(0.9)/Co60Fe20B20(1.6)/Co70Fe30(0.8)/MgO(1)/
Fe80B20(6)/MgO(1)/Ta(8)/Ru(7) (with thicknesses given in parentheses in nano-
metres) were prepared by ultrahigh vacuum (UHV) magnetron sputtering. After 
annealing at 360 °C for 1 h, the resistance–area products (RA) were approximately 
3.6 Ω​ μ​m2. Circular-shape MTJs with a diameter of approximately 375 nm were pat-
terned using Ar ion etching and e-beam lithography. The resistance of the samples is 
close to 40 Ω​ and the magneto-resistance ratio is about 135% at room temperature.  
The FeB layer presents a vortex structure as the ground state for the dimensions 
used here. In a small region called the core of the vortex, the magnetization spirals 
out of plane. Under d.c. current injection, the core of the vortex steadily gyrates 
around the centre of the dot with a frequency in the range 250–400 MHz for the 
oscillators we consider here. Vortex dynamics driven by spin torque are well under-
stood, well controlled and have been shown to be particularly stable22.
Measurement set-up. The experimental implementation for spoken-digit recogni-
tion and sine/square classification tasks is illustrated in Fig. 1d. The pre-processed 
input signal Vin is generated by a high-frequency arbitrary-waveform generator and 
injected as a current through the magnetic nano-oscillator. The sampling rate of the 
source is set to 200 MHz (20 points per interval of time θ) for the spoken-digit rec-
ognition task and 500 MHz (50 points per interval of time θ) for the classification of 
sines and squares. The peak-to-peak variation in the input signal is 500 mV, which 
corresponds to peak-to-peak current variations of 6 mA, as illustrated in Fig. 1c 
(part of the incoming signal is reflected owing to impedance mismatch). The bias 
conditions of the oscillator are set by a d.c. current source and an electromagnet 
that applies a field perpendicular to the plane of the magnetic layers. The oscillating 
voltage emitted by the nano-oscillator is rectified by a planar tunnel microwave 
diode, with a bandwidth of 0.1–12.4 GHz and a response time of 5 ns. The input 
dynamic range of the diode is between 1 μ​W and 3.15 mW, corresponding to a 
d.c. output level of 0–400 mV. We use an amplifier to adjust the emitted power of 
the nano-oscillator to the working range of the diode. The output signal is then 
recorded by a real-time oscilloscope. In Figs 1b, c, e, 2d and 3b–e, the amplitude of 
the signal emitted by the oscillator is shown without amplification (the signal meas-
ured after the diode has been divided by the total amplification of the circuit, about 
+​21 dB). If, owing to sampling errors, the measured envelope of the oscillators is 
shifted with respect to the input, classification accuracy can be degraded. We use 
alignment marks to align our measurements with the input when we reconstruct 
the output. The alignment precision is ±​1 ns.
General concepts of reservoir computing. In machine learning, a reservoir is 
a network of recurrently and randomly connected nonlinear nodes4,5. When an 
input signal is injected in the reservoir, it is mapped to a higher-dimensional space 
in which it can become linearly separable. The key insight behind reservoir com-
puting is that the network does not need any tuning: all connections inside the 
reservoir are kept fixed. Only external connections (between the reservoir and an 
output layer) are trained to achieve the desired task.

In other words, reservoir computing requires the generation of complex nonlinear  
dynamics but, as a trade-off, learning is greatly simplified. For efficient reservoir 
computing, several requirements related to the dynamical properties of the network 
should be satisfied. First, different inputs should trigger different dynamics (separa-
tion property) and similar inputs should generate similar dynamics (approximation 
property), enabling efficient classification. Second, the reservoir state should not 
depend only on present inputs but also on recent past inputs. This short-term 
memory, called fading memory, is essential for processing temporal sequences for 
which the history of the signal is important.

A single nonlinear oscillator can emulate a reservoir when it is set in transient 
dynamics by a rapidly varying input24. The loss of parallelism is compensated 
by an additional pre-processing input step: the input is multiplied by a rapidly 
varying mask, which enables virtual nodes to be defined, interconnected in time 
through the resultant oscillator dynamics. This approach provides a marked sim-
plification of the reservoir scheme for hardware implementations, and has been 
realized in hardware with optical or electronic oscillators assembled from several 
components23–26.
Spoken-digit recognition. For this task, the inputs are taken from the NIST TI-46 
data corpus27. The input consists of isolated spoken digits said by five different 
female speakers. Each speaker pronounces each digit ten times. The 500 audio 
waveforms are sampled at a rate of 12.5 kHz and have variable time lengths.

We used two different filtering methods: spectrogram and cochlear models. 
Both filters break the word into several time intervals Nτ of duration τ and ana-
lyse the frequency content in each interval τ through either a Fourier transform 
(spectrogram model; 65 channels, Nτ ∈​ {24, …, 67}; Fig. 2b) or a more complicated 
nonlinear approach (cochlear model; 78 channels, Nτ∈​ {14, …, 41}). The input for 
each word is composed of an amplitude for each of the Nf =​ 65 or Nf =​ 78 frequency 
channels times Nτ time intervals. This input is pre-processed by multiplying the 

frequency content for each time interval by a mask matrix containing Nf ×​ Nθ 
random binary values, giving a total of Nτ ×​ Nθ values as input to the oscillator  
(Fig. 2c). Here, we are modelling Nθ =​ 400 input neurons, each of which is  
connected to all of the frequency channels for each time interval.

Each preprocessed input value is consecutively applied to the oscillator as a 
constant current for a time interval of θ ≈​ 100 ns, which is about five times shorter 
than the relaxation time of the oscillator, as recommended in ref. 24. This time is 
short enough to guarantee that the oscillator is maintained in its transient regime 
so the emulated neurons are connected to each other, but is long enough to let the 
oscillator respond to the input excitation. The amplitude of the a.c. voltage across 
the oscillator is recorded for offline post-processing (Fig. 2d).

The post-processing of the output consists of two distinct steps. The first is 
called the training (or learning) process and the second is called the classification 
(or recognition) process. The goal of training is to determine a set of weights wi,θ, 
where i indexes the desired digit. These weights are used to multiply the output 
voltages to give 10Nτ output values, which are then averaged over the Nτ time 
intervals to give 10 output values yi, which should ideally be equal to the target 
values = .�y 1 0i  for the appropriate digit and 0.0 for the rest. In the training process, 
a fraction of the utterances are used to train these weights; the rest of the utterances 
are used in the classification process to test the results.

The optimum weights are found by minimizing the difference between ~yi and 
yi for all of the words used in the training. In practice, optimal values are deter-
mined by using techniques for extracting meaningful eigenvalues from singular 
matrices such as the linear Moore–Penrose pseudo-inverse operator (denoted by 
a dagger symbol †). If we consider the target matrix �Y , which contains the targets 
�yi for all of the time steps τ used for the training, and the response matrix S, which 
contains all neuron responses for all of the time steps τ used for the training, then 
the matrix W, which contains the optimal weights, is given by = �W YS†. This step 
is performed on a computer and takes several seconds. In the future, real-time 
processing on a nanosecond timescale could be realized using fully parallel  
networks of interacting nano-oscillators.

During the classification phase, the ten reconstructed outputs corresponding 
to one digit are averaged over all of the time steps τ of the signal, and the digit is 
identified by taking the maximum value of the ten averaged reconstructed outputs. 
The averaged reconstructed output that corresponds to the digit in question should 
be close to 1 and the others should be close to 0. The efficiency of the recognition 
is evaluated by the word success rate, which is the rate of digits that are correctly 
identified. The training can be done using more or fewer data (here ‘utterances’). 
We always trained the system using the ten digits spoken by the five speakers. The 
only parameter that we changed is the number of utterances used for the training. 
If we use N utterances for training, then we use the remaining 10 −​ N utterances 
for testing. However, some utterances are very well pronounced whereas others are 
hardly distinguishable. As a consequence, the resulting recognition rate depends 
on which N utterances are picked for training in the set of ten (for example, if 
N =​ 2, then the utterances picked for training could be the first and second, but 
also the second and third, or the sixth and tenth, or any other of the 10!/(8!2!) 
combinations of 2 picked out of 10). To avoid this bias, the recognition rates that 
we present here are the average of the results over all possible combinations. The 
error bars corresponds to the standard deviation of the word recognition rate.  
The raw spectrogram is not complex enough to allow a correct reconstruction 
of the target during the training. Adding the oscillator brings complexity and  
suppresses this phenomenon.
Sine- and square-wave classification. For this classification task, the input is a 
random sequence of 160 sines and squares with the same period—the first half 
of the sequence for training and the second half for classification. Each period is 
discretized into eight points separated by a time step τ. The pre-processing con-
sists of multiplying the value of each point by the same binary sequence that is 
generated by a random distribution of +​1 and −​1 values. In contrast to spoken- 
digit recognition, the mask is a binary vector (instead of a binary matrix). The fast 
binary sequence contains 24 values, so 24 neurons ~Vi are emulated during each 
time step τ.

The target �y  for the network output y is 0 for all of the trajectories in response 
to a sine and 1 for all of the trajectories in response to a square. The best weights 
are found by linear regression, as explained above for the spoken-digit recognition 
task. For sine/square recognition, we record five points instead of one for each 
neuron when we measure the output of the oscillator. During post-processing, we 
use these additional states between ~Vi and +

~Vi 1 to increase the number of coeffi-
cients available for solving the problem, and thus increase classification accuracy. 
In addition, the best performance does not necessarily correspond to a target in 
exact phase with the oscillator’s output. The standard deviation of the root-mean-
square value of Voutput −​ Vtarget, obtained with ten repetitions, is around 1%.
Data availability. The datasets generated and analysed during this study are avail-
able from the corresponding author on reasonable request.
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